Слово Туэ-Морса — различия между версиями
(→Свойства и эквивалентные определения) |
м (→Свойство о подстроках) |
||
Строка 59: | Строка 59: | ||
#:Тогда рассмотрю три случая: <tex>m \geqslant 5</tex>, <tex>m=3</tex> и <tex>m=1</tex>. Пусть <tex>b_n=\left\{ \begin{array}{rl} | #:Тогда рассмотрю три случая: <tex>m \geqslant 5</tex>, <tex>m=3</tex> и <tex>m=1</tex>. Пусть <tex>b_n=\left\{ \begin{array}{rl} | ||
a, & t_n=t_{n-1} \\ | a, & t_n=t_{n-1} \\ | ||
− | b, & t_n \ne t_{n-1} | + | b, & t_n \ne t_{n-1} \\ |
− | \end{array} \right.</tex> для <tex>n \geqslant 1</tex>. Заметим, что <tex>b_{4n+2}=a</tex> так как <tex>4n+2</tex> и <tex>4n+1</tex> одинаково записываются в двоичной записи, кроме последних двух битов, которые равны <tex>10</tex> и <tex>01</tex> соответственно и значит <tex>t_{4n+2}=t_{4n+1}</tex>. Так же заметим, что <tex>b_{2n+1}=1</tex>, так как <tex>2n+1</tex> и <tex>2n</tex> одинаково записываются в двоичной системе, кроме последнего бита и значит, что <tex>t_{2n+1}=\varphi(t_{2n})</tex> | + | \end{array} \right.</tex>, для <tex>n \geqslant 1</tex>. Заметим, что <tex>b_{4n+2}=a</tex> так как <tex>4n+2</tex> и <tex>4n+1</tex> одинаково записываются в двоичной записи, кроме последних двух битов, которые равны <tex>10</tex> и <tex>01</tex> соответственно и значит <tex>t_{4n+2}=t_{4n+1}</tex>. Так же заметим, что <tex>b_{2n+1}=1</tex>, так как <tex>2n+1</tex> и <tex>2n</tex> одинаково записываются в двоичной системе, кроме последнего бита и значит, что <tex>t_{2n+1}=\varphi(t_{2n})</tex> |
#* <tex>m</tex> нечетно и <tex>m \geqslant 5</tex>. | #* <tex>m</tex> нечетно и <tex>m \geqslant 5</tex>. | ||
#*:Тогда <tex>b_{k+j}=b_{k+j+m}</tex> для <tex>1 \leqslant j \leqslant m</tex>. С <tex>m \geqslant 5</tex> существует <tex>j</tex>, такое что <tex>k+j=2</tex> по модулю <tex>4</tex>. Тогда для <tex>k+j</tex> точно известно, что <tex>b_{k+j}=0</tex>, но с другой стороны <tex>k+j+m</tex> {{---}} нечетно, значит <tex>b_{k+j+m}=1</tex>. Противоречие. | #*:Тогда <tex>b_{k+j}=b_{k+j+m}</tex> для <tex>1 \leqslant j \leqslant m</tex>. С <tex>m \geqslant 5</tex> существует <tex>j</tex>, такое что <tex>k+j=2</tex> по модулю <tex>4</tex>. Тогда для <tex>k+j</tex> точно известно, что <tex>b_{k+j}=0</tex>, но с другой стороны <tex>k+j+m</tex> {{---}} нечетно, значит <tex>b_{k+j+m}=1</tex>. Противоречие. |
Версия 15:52, 7 мая 2016
Определение: |
Определим последовательность строк
| над двухбуквенным алфавитом следующим образом: , где:
Содержание
Примеры
Приведём первые пять строк Туэ-Морса:
Свойства и эквивалентные определения
Свойство о получении следующей строки
Как видно из определения, символ на
-ой позиции не зависит от номера строки. Так как длина строк возрастает, каждая строка является собственным префиксом следующей, поэтому можно рассматривать получение следующей строки как приписывание к текущей строке некоторой другой строки.Теорема: |
Пусть — морфизм, инвертирующий символы:
тогда для строк Туэ-Морса верно следующее соотношение: |
Доказательство: |
Заметим, что соответствующие индексы символов при приписывании новой строки к строке | получаются добавлением к индексам числа . Количество единиц в двоичной записи числа ( ) ровно на один больше, чем в двоичной записи числа . Поэтому приписываемая строка есть ни что иное, как исходная строка с инвертированными символами.
Данная теорема позволяет определять последовательность строк Туэ-Морса следующим образом:
, .Часто рассматривают предельный случай — бесконечную строку Туэ-Морса, любой символ которой можно получить из обычной строки Туэ-Морса с достаточно большим номером. Бесконечную строку также можно задать с помощью правил ассоциативного исчисления, клеточного автомата, рекурсивных соотношений.
Свойство о подстроках
Теорема: |
Не существует двух равных как строки подстрок строки , имеющих пересекающиеся вхождения в |
Доказательство: |
Очевидно что и для . Пусть существует две равные как строки подстрок строки , имеющих пересекающиеся вхождения в , тогда , где — подстроки строки , а строка — искомая подстрока.Пусть и , тогда по предположению при .Рассмотрим наименьшее . Тогда возможны два случая: четно и нечетно:
|
См. также
Ссылки
- Wikipedia — Thue-Morse sequence
- Wolfram Mathworld — Thue-Morse sequence
- Jean-Paul Allouche,Jeffrey Shallit «Automatic Sequences: Theory, Applications, Generalizations» — 15 стр.