J2pij1Lmax — различия между версиями
(→Описание решения) |
(→Описание решения) |
||
Строка 13: | Строка 13: | ||
Судя по условию, <tex>i</tex>-тая работа может характеризоваться двумя значениями: количество операций <tex>n_i</tex> и машиной, на которой была совершена первая операция. Пусть <tex>r = \sum_{i=1}^n N_i</tex> {{---}} общее количество операций. | Судя по условию, <tex>i</tex>-тая работа может характеризоваться двумя значениями: количество операций <tex>n_i</tex> и машиной, на которой была совершена первая операция. Пусть <tex>r = \sum_{i=1}^n N_i</tex> {{---}} общее количество операций. | ||
− | Допустим, самым ранним моментом, когда операция может начать выполняться, будет момент времени 0, а верхнюю границу момента начала выполнения последней операции обозначим за <tex>t_{max}</tex>. К примеру, мы можем выбрать <tex>t_{max} = r</tex>. Тогда расписание можно представить как два списка <tex>A(t)</tex> и <tex>B(t) (t = 0,\ldots,t_{max})</tex>, где <tex>A(t) = O_{ij}</tex>, если операция <tex>O_{ij}</tex> должна выполниться на машине <tex>A</tex> в момент времени <tex>t</tex> и <tex>A(t) =</tex> <tex> \varnothing</tex>, если машина <tex>A</tex> простаивает в этот момент. И для каждой операции <tex>O_{ij}</tex>, выполняющейся на машине <tex>A</tex> существует <tex>t</tex>, для которого <tex>A(t) = O_{ij}</tex>. Аналогично для <tex>B_i</tex>. Расписание достижимо тогда и только тогда, когда из <tex>A(t) (B(t)) = O_{ij} , 1 < j \ | + | Допустим, самым ранним моментом, когда операция может начать выполняться, будет момент времени 0, а верхнюю границу момента начала выполнения последней операции обозначим за <tex>t_{max}</tex>. К примеру, мы можем выбрать <tex>t_{max} = r</tex>. Тогда расписание можно представить как два списка <tex>A(t)</tex> и <tex>B(t) (t = 0,\ldots,t_{max})</tex>, где <tex>A(t) = O_{ij}</tex>, если операция <tex>O_{ij}</tex> должна выполниться на машине <tex>A</tex> в момент времени <tex>t</tex> и <tex>A(t) =</tex> <tex> \varnothing</tex>, если машина <tex>A</tex> простаивает в этот момент. И для каждой операции <tex>O_{ij}</tex>, выполняющейся на машине <tex>A</tex> существует <tex>t</tex>, для которого <tex>A(t) = O_{ij}</tex>. Аналогично для <tex>B_i</tex>. Расписание достижимо тогда и только тогда, когда из <tex>A(t) (B(t)) = O_{ij} , 1 < j \leqslant n_i</tex> следует <tex>O_{i,j-1} = B(s) (A(s))</tex> для некоторого <tex>s < t</tex>, и первая операция для каждой работы запланирована на нужной машине. Перестановку всех операций будем называть списком. Для данного списка <tex>L</tex> осуществимое расписание может быть создано следующим способом: планируем выполнять операции в порядке, соответствующим <tex>L</tex>, причем каждую операцию стараемся выполнить как можно раньше. Подобное расписание будем называть соответствующим <tex>L</tex> расписанием. |
<tex>C_i</tex> {{---}} время окончания работы <tex>i</tex> в достижимом расписании <tex>y = (A(t), B(t))</tex> можно рассчитать как: | <tex>C_i</tex> {{---}} время окончания работы <tex>i</tex> в достижимом расписании <tex>y = (A(t), B(t))</tex> можно рассчитать как: | ||
Версия 15:16, 11 мая 2016
Условие задачи
В нотации Грэхема задача носит название
Дано
работ и две машины, обозначенные как и .-тая работа состоит из операций , которые должны быть выполнены последовательно и, при этом, если операция была совершена на машине , то операция должна быть совершена на машине .
Задача заключается в том, что для данного каждой
-той работе дедлайна необходимо найти достижимое расписание с наименьшими максимальным временем опоздания:
Описание решения
Судя по условию,
-тая работа может характеризоваться двумя значениями: количество операций и машиной, на которой была совершена первая операция. Пусть — общее количество операций.Допустим, самым ранним моментом, когда операция может начать выполняться, будет момент времени 0, а верхнюю границу момента начала выполнения последней операции обозначим за
. К примеру, мы можем выбрать . Тогда расписание можно представить как два списка и , где , если операция должна выполниться на машине в момент времени и , если машина простаивает в этот момент. И для каждой операции , выполняющейся на машине существует , для которого . Аналогично для . Расписание достижимо тогда и только тогда, когда из следует для некоторого , и первая операция для каждой работы запланирована на нужной машине. Перестановку всех операций будем называть списком. Для данного списка осуществимое расписание может быть создано следующим способом: планируем выполнять операции в порядке, соответствующим , причем каждую операцию стараемся выполнить как можно раньше. Подобное расписание будем называть соответствующим расписанием. — время окончания работы в достижимом расписании можно рассчитать как:или — операция -той работы}
Задача заключается в том, что для данного каждой работе
дедлайна мы хотим найти достижимое расписание с наименьшими максимальным временем опоздания:
Следующий алгоритм решает эту задачу:
- Введём для каждой операции величину
- Создадим список всех операций , упорядоченный в порядке неубывания значений
- Найдем соответствующее списку расписание.
Этот алгоритм может быть реализованным с асимптотикой
.Мы предполагаем, что
для и хотя бы для одной работы . Иначе, вычтем из всех минимальное значение по .Так как
для всех и справедливо как минимум для одной работы . К тому же, можно предположить, что . Таким образом, работы с , то есть c , можно смело игнорировать. Они не влияют на значение улучшаемой функции , так как для некого можно выполнять эти работы в любом порядке после всех остальных. Для оставшихся операций мы имеем:
Каждую операцию мы кладём в соответствующий список (на самом деле это должен быть heap для хорошей асимптотики)
, где . На втором шаге мы планируем операции соответственно возрастающему по номеру списка порядку, где операции из одного списка могут выполнятся в произвольном порядке.Алгоритм
Давайте детально рассмотрим алгоритм.
и обозначают первый период времени , когда соответствующие машины и бездействуют. обозначает время окончания последней запланированной операции -той работы. — множество работ, гдеmain() for k: -r + 1 to r - 1= ; Z = ; for i: 1 to n if < r for j: 1 to n_i добавить в else добавить работу i в Z for i: 1 to n LAST(i) = 0; T1 = 0; T2 = 0; for k: -r + 1 to r - 1 while Выбрать задание из = ; schedule( ) while Выбрать работу i из Z Z = ; for j: 1 to schedule( )
schedule() if == A if T1 < LAST(i) t = LAST(i) A(t) = (*) else t = T1; A(t) = ; while T1 = T1 + 1; else if T2 < LAST(i) t = LAST(i) B(t) = (**) else t = T2; A(t) = ; while T2 = T2 + 1; LAST(i) = t + 1
Очевидно, что количество шагов алгоритма ограничено
Доказательство
Для доказательства того, что алгоритм решения задачи корректен, необходимо показать то, что он строит достижимое расписание. Это справедливо тогда и только тогда, когда до исполнения строчек (*) и (**) пусты A(t) и B(t) соответственно. Иначе две разные операции будут выполняться в один момент времени на одной машине. Для того, чтобы показать достижимость докажем лемму.
Лемма: |
Пусть — расписание, где . Тогда для каждого , где выполняется |
Доказательство: |
Докажем по индукции по Предположим теперь что лемма верна для всех , что если и , то . Это, очевидно, верно при так как если и не соответствует работе , то означает что операция должна быть запланирована в расписании ранее. при и . Выберем максимальное , такое что и . По предположению индукции, и соответствуют одной и той же работе для . Пусть ) не соответствует работе . Тогда для каждого операция не соответствует работе . Таким образом, может быть обработан в момент , что противоречит тому, что является расписанием. |
Теорема: |
Пусть — операция, которую планируют строчкой (*) или (**) и . Тогда |
Доказательство: |
Эта статья находится в разработке! |
Лемма: |
Если существует расписание без опозданий, то данный алгоритм построит расписание без опозданий. |
Доказательство: |
Эта статья находится в разработке! |
Теорема: |
Расписание, построенное данным алгоритмом, оптимально. |
Доказательство: |
Эта статья находится в разработке! |
Источники
- Peter Brucker. «Scheduling Algorithms» — «Springer», 2006 г. — 180 стр. — ISBN 978-3-540-69515-8