J2pij1Lmax — различия между версиями
Строка 119: | Строка 119: | ||
|proof={{в разработке}} | |proof={{в разработке}} | ||
}} | }} | ||
+ | ==См. также.== | ||
+ | * [[Классификация задач]] | ||
+ | * [[J2ni2Cmax|<tex>J2 \mid n_{i} \le 2 \mid C_{max}</tex>]] | ||
==Источники информации== | ==Источники информации== | ||
* Peter Brucker. «Scheduling Algorithms» {{---}} «Springer», 2006 г. {{---}} 180 стр. {{---}} ISBN 978-3-540-69515-8 | * Peter Brucker. «Scheduling Algorithms» {{---}} «Springer», 2006 г. {{---}} 180 стр. {{---}} ISBN 978-3-540-69515-8 |
Версия 22:37, 11 мая 2016
Содержание
Условие задачи
В нотации Грэхема задача носит название
Дано
работ и две машины, обозначенные как и .-тая работа состоит из операций , которые должны быть выполнены последовательно и, при этом, если операция была совершена на машине , то операция должна быть совершена на машине .
Задача заключается в том, что для данного каждой
-той работе дедлайна необходимо найти достижимое расписание с наименьшими максимальным временем опоздания:
Описание решения
Судя по условию,
-тая работа может характеризоваться двумя значениями: количество операций и машиной, на которой была совершена первая операция. Пусть — общее количество операций.Допустим, самым ранним моментом, когда операция может начать выполняться, будет момент времени 0, а верхнюю границу момента начала выполнения последней операции обозначим за
. К примеру, мы можем выбрать . Тогда расписание можно представить как два списка и , где , если операция должна выполниться на машине в момент времени и , если машина простаивает в этот момент. И для каждой операции , выполняющейся на машине существует , для которого . Аналогично для . Расписание достижимо тогда и только тогда, когда из следует для некоторого , и первая операция для каждой работы запланирована на нужной машине. Перестановку всех операций будем называть списком. Для данного списка осуществимое расписание может быть создано следующим способом: планируем выполнять операции в порядке, соответствующим , причем каждую операцию стараемся выполнить как можно раньше. Подобное расписание будем называть соответствующим расписанием. — время окончания работы в достижимом расписании можно рассчитать как:или — операция -той работы}
Задача заключается в том, что для данного каждой работе
дедлайна мы хотим найти достижимое расписание с наименьшими максимальным временем опоздания:
Следующий алгоритм решает эту задачу:
- Введём для каждой операции величину
- Создадим список всех операций , упорядоченный в порядке неубывания значений
- Найдем соответствующее списку расписание.
Этот алгоритм может быть реализованным с асимптотикой
.Мы предполагаем, что
для и хотя бы для одной работы . Иначе, вычтем из всех минимальное значение по .Так как
для всех и справедливо как минимум для одной работы . К тому же, можно предположить, что . Таким образом, работы с , то есть c , можно смело игнорировать. Они не влияют на значение улучшаемой функции , так как для некого можно выполнять эти работы в любом порядке после всех остальных. Для оставшихся операций мы имеем:
Каждую операцию мы кладём в соответствующий список (на самом деле это должен быть heap для хорошей асимптотики)
, где . На втором шаге мы планируем операции соответственно возрастающему по номеру списка порядку, где операции из одного списка могут выполнятся в произвольном порядке.Алгоритм
Давайте детально рассмотрим алгоритм.
и обозначают первый период времени , когда соответствующие машины и бездействуют. обозначает время окончания последней запланированной операции -той работы. — множество работ, гдеmain() for k: -r + 1 to r - 1= ; Z = ; for i: 1 to n if < r for j: 1 to n_i добавить в else добавить работу i в Z for i: 1 to n LAST(i) = 0; T1 = 0; T2 = 0; for k: -r + 1 to r - 1 while Выбрать задание из = ; schedule( ) while Выбрать работу i из Z Z = ; for j: 1 to schedule( )
schedule() if == A if T1 < LAST(i) t = LAST(i) A(t) = (*) else t = T1; A(t) = ; while T1 = T1 + 1; else if T2 < LAST(i) t = LAST(i) B(t) = (**) else t = T2; A(t) = ; while T2 = T2 + 1; LAST(i) = t + 1
Очевидно, что количество шагов алгоритма ограничено
Доказательство
Для доказательства того, что алгоритм решения задачи корректен, необходимо показать то, что он строит достижимое расписание. Это справедливо тогда и только тогда, когда до исполнения строчек (*) и (**) пусты A(t) и B(t) соответственно. Иначе две разные операции будут выполняться в один момент времени на одной машине. Для того, чтобы показать достижимость докажем лемму.
Лемма: |
Пусть — расписание, где . Тогда для каждого , где выполняется |
Доказательство: |
Докажем по индукции по Предположим теперь что лемма верна для всех , что если и , то . Это, очевидно, верно при так как если и не соответствует работе , то означает что операция должна быть запланирована в расписании ранее. при и . Выберем максимальное , такое что и . По предположению индукции, и соответствуют одной и той же работе для . Пусть ) не соответствует работе . Тогда для каждого операция не соответствует работе . Таким образом, может быть обработан в момент , что противоречит тому, что является расписанием. |
Теорема: |
Пусть — операция, которую планируют строчкой (*) или (**) и . Тогда |
Доказательство: |
Предположим что | . Поскольку , из предыдущей леммы следует, что и и являются операциями одной и той же задачи . Так как , у нас должно быть значение . Это невозможно, т.к. при и , .
Лемма: |
Если существует расписание без опозданий, то данный алгоритм построит расписание без опозданий. |
Доказательство: |
Эта статья находится в разработке! |
Теорема: |
Расписание, построенное данным алгоритмом, оптимально. |
Доказательство: |
Эта статья находится в разработке! |
См. также.
Источники информации
- Peter Brucker. «Scheduling Algorithms» — «Springer», 2006 г. — 180 стр. — ISBN 978-3-540-69515-8