Неотделимые множества — различия между версиями
Строка 36: | Строка 36: | ||
Существуют такие перечислимые множества <tex>X'</tex> и <tex>Y'</tex>, что <tex>X' \cap Y' = \o</tex> и не существует таких разрешимых множеств <tex>X</tex> и <tex>Y</tex>, что <tex>X' \in X</tex>, <tex>Y' \in Y</tex>, <tex>X \cap Y = \o</tex>, <tex>X \cup Y = \mathbb{N}</tex>. | Существуют такие перечислимые множества <tex>X'</tex> и <tex>Y'</tex>, что <tex>X' \cap Y' = \o</tex> и не существует таких разрешимых множеств <tex>X</tex> и <tex>Y</tex>, что <tex>X' \in X</tex>, <tex>Y' \in Y</tex>, <tex>X \cap Y = \o</tex>, <tex>X \cup Y = \mathbb{N}</tex>. | ||
|proof= | |proof= | ||
+ | Рассмотрим множества <tex>X' = \{n \mid f(n) = 0\}</tex> и <tex>Y' = \{n \mid f(n) = 1\}</tex>, где | ||
}} | }} |
Версия 01:11, 1 декабря 2010
Лемма (1): |
Существует вычислимая функция, не имеющая всюду определенного вычислимого продолжения. |
Доказательство: |
Рассмотрим функцию универсальная функция. , где —Предположим, у нее существует всюду определенное продолжение . Это значит, что и .По определению универсальной функции Таким образом, построенная функция для некоторого . Тогда . Поскольку всюду определена, то . Значит, . Получили противоречие. не имеет всюду определенного вычислимого продолжения. |
Лемма (2): |
Существует вычислимая функция, значения которой принадлежат множеству , не имеющая всюду определенного вычислимого продолжения. |
Доказательство: |
Рассмотрим функцию Предположим, у нее существует всюду определенное продолжение .для некоторого . . Поскольку всюду определена, то . Но тогда по построению функции видим, что . Получили противоречие. |
Теорема: |
Существуют такие перечислимые множества и , что и не существует таких разрешимых множеств и , что , , , . |
Доказательство: |
Рассмотрим множества | и , где