QpmtnriLmax — различия между версиями
Zemskovk (обсуждение | вклад) м |
Zemskovk (обсуждение | вклад) (→Корректность и оптимальность алгоритма) |
||
Строка 37: | Строка 37: | ||
|proof=<tex>(b) \Rightarrow (a)</tex> | |proof=<tex>(b) \Rightarrow (a)</tex> | ||
− | Рассмотрим в расширенной сети поток величиной <tex>\sum\limits_{i = 1}^n {p_i}</tex>. Обозначим через <tex>x_{iK}</tex> общий поток, который идет от <tex>J_i</tex> до <tex>I_K</tex>. Заметим, что <tex>\sum\limits_{i = 1}^n \sum\limits_{K = 2}^r x_{iK} = \sum\limits_{i = 1}^n p_i</tex>. Достаточно показать, что для каждого подмножества <tex>A \subseteq \{ 1, . . . , n \}</tex> выполняется | + | :Рассмотрим в расширенной сети поток величиной <tex>\sum\limits_{i = 1}^n {p_i}</tex>. Обозначим через <tex>x_{iK}</tex> общий поток, который идет от <tex>J_i</tex> до <tex>I_K</tex>. Заметим, что <tex>\sum\limits_{i = 1}^n \sum\limits_{K = 2}^r x_{iK} = \sum\limits_{i = 1}^n p_i</tex>. Достаточно показать, что для каждого подмножества <tex>A \subseteq \{ 1, . . . , n \}</tex> выполняется |
− | <tex>\sum\limits_{i \in A} x_{iK} \leqslant T_Kh(A)</tex> ,где <tex>h(A) = | + | :<tex>\sum\limits_{i \in A} x_{iK} \leqslant T_Kh(A)</tex> ,где <tex>h(A) = |
\begin{cases} | \begin{cases} | ||
S_{|A|}, & \text{if }|A| \leqslant m \\ | S_{|A|}, & \text{if }|A| \leqslant m \\ | ||
Строка 45: | Строка 45: | ||
\end{cases} </tex>. | \end{cases} </tex>. | ||
− | Это означает, что условие <tex>\sum\limits_{i \in A} p_i \leqslant Th(A), \forall A \subseteq \{ 1, ... , n \}</tex> выполняется и требования к обработке <tex>x_{1K}, . . . , x_{nK}</tex> могут быть запланированы как <tex>I_K</tex> для <tex>K = 2, . . . , r</tex>. Рассмотрим подсеть в расширенной сети в подмножестве <tex>A</tex> и соответствующие части потока. Фрагмент частичного потока, который проходит через <tex>(K, j)</tex> ограничен | + | :Это означает, что условие <tex>\sum\limits_{i \in A} p_i \leqslant Th(A), \forall A \subseteq \{ 1, ... , n \}</tex> выполняется и требования к обработке <tex>x_{1K}, . . . , x_{nK}</tex> могут быть запланированы как <tex>I_K</tex> для <tex>K = 2, . . . , r</tex>. Рассмотрим подсеть в расширенной сети в подмножестве <tex>A</tex> и соответствующие части потока. Фрагмент частичного потока, который проходит через <tex>(K, j)</tex> ограничен |
− | <tex>\min \{ j(s_j −- s_{j + 1})T_K, |A|(s_j - s_{j+1})T_K \} = T_K(s_j - s_{j+1}) \min \{ j, |A| \}</tex>. | + | :<tex>\min \{ j(s_j −- s_{j + 1})T_K, |A|(s_j - s_{j+1})T_K \} = T_K(s_j - s_{j+1}) \min \{ j, |A| \}</tex>. |
− | Таким образом, мы имеем | + | :Таким образом, мы имеем |
<table align = center> | <table align = center> | ||
Строка 59: | Строка 59: | ||
</table> | </table> | ||
− | То, что равенство <tex>(*)</tex> справедливо, может рассматриваться как следствие. Если <tex>|A| > m</tex>, то | + | :То, что равенство <tex>(*)</tex> справедливо, может рассматриваться как следствие. Если <tex>|A| > m</tex>, то |
− | <tex>\sum\limits_{j = 1}^m \min \{ j, |A| \}(s_j - s_{j + 1}) = s_1 - s_2 + 2s_2 - 2s_3 + 3s_3 - 3s_4 + ... + ms_s - ms_{m+1} =\ </tex> | + | :<tex>\sum\limits_{j = 1}^m \min \{ j, |A| \}(s_j - s_{j + 1}) = s_1 - s_2 + 2s_2 - 2s_3 + 3s_3 - 3s_4 + ... + ms_s - ms_{m+1} =\ </tex> |
− | <tex>S_m = h(A)</tex>. | + | :<tex>S_m = h(A)</tex>. |
− | В противном случае | + | :В противном случае |
− | <tex>\sum\limits_{j = 1} \min \{ j, |A| \}(s_j - s_{j + 1}) = s_1 - s_2 + 2s_2 - 2s_3 + 3s_3 - ... + (|A| - 1)s_{|A| - 1} -\ </tex> | + | :<tex>\sum\limits_{j = 1} \min \{ j, |A| \}(s_j - s_{j + 1}) = s_1 - s_2 + 2s_2 - 2s_3 + 3s_3 - ... + (|A| - 1)s_{|A| - 1} -\ </tex> |
− | <tex>(|A| - 1)s_{|A|} + |A|(s_{|A|} - s_{|A| - 1} - ... - s_m + s_m - s_{m + 1}) = S_{|A|} = h(A)</tex> | + | :<tex>(|A| - 1)s_{|A|} + |A|(s_{|A|} - s_{|A| - 1} - ... - s_m + s_m - s_{m + 1}) = S_{|A|} = h(A)</tex> |
− | <tex>(a) \Rightarrow (b) | + | <tex>(a) \Rightarrow (b)</tex><br> |
− | Предположим, что допустимое расписание существует. Для <tex>i = 1, ... , n </tex> и <tex>K = 2, ..., r</tex> пусть <tex>x_{iK}</tex> является "объемом работ", который будет выполняться в интервале <tex>I_K</tex> в соответствии с нашим возможным расписанием. Тогда для всех <tex>K = 2, ..., r</tex> и произвольных наборов <tex>A \subseteq \{ 1, . . . , n \}</tex>, неравенство | + | :Предположим, что допустимое расписание существует. Для <tex>i = 1, ... , n </tex> и <tex>K = 2, ..., r</tex> пусть <tex>x_{iK}</tex> является "объемом работ", который будет выполняться в интервале <tex>I_K</tex> в соответствии с нашим возможным расписанием. Тогда для всех <tex>K = 2, ..., r</tex> и произвольных наборов <tex>A \subseteq \{ 1, . . . , n \}</tex>, неравенство |
− | <table align = center> | + | :<table align = center> |
<tr> | <tr> | ||
<td> | <td> |
Версия 05:08, 19 мая 2016
Задача: |
Рассмотрим задачу на нахождение расписания:
|
Содержание
Алгоритм
Алгоритм решения
Как в задаче применим метод двоичного поиска и сведем задачу к . Для существования расписания с требуется, чтобы у работы с номером выполнялось , что эквивалентно . Опишем алгоритм решения при помощи сведения к задаче поиска максимального потока.
Пусть
— упорядоченная последовательность всех значений и . Определим интервалы на исходной сети (Рис. 1) для . Cчитаем, что станки занумерованы в порядке невозрастания скоростей (также считаем ).Искомая сеть строится с помощью расширения сети из задачи
. Обозначим через набор предшественников узла , тогда замененная нами подсеть определяется как .Расширение сети показано на Рис. 2.
Расширенная подсеть строится путем добавления к вершинам
вершин . При , есть дуги от до с пропускной способностью и для всех и существует дуга из в с пропускной способностью . Это выполняется для каждой вершины . Кроме того, мы сохраняем дуги из в пропускной способностью и дуги из в пропускной способностью (Рис. 1).Корректность и оптимальность алгоритма
Теорема: | ||
Следующие утверждения эквивалентны:
| ||
Доказательство: | ||
| ||
Время работы
Работа с максимальным потоком в расширенной сети занимает
шагов, проверка может быть сделана с такой же скоростью. Для решения мы используем бинарный поиск, а значит, получаем алгоритм с -приближенной сложностью , потому как , ограничен , при .Задача [1].
представляет собой частный случай , и может быть решена более эффективноПримечания
- ↑ Описано в Peter Brucker. «Scheduling Algorithms» — «Springer», 2006 г. — 133 стр.
Источники информации
- Peter Brucker. «Scheduling Algorithms» — «Springer», 2006 г. — 129 — 133 стр. — ISBN 978-3-540-69515-8