Изменения

Перейти к: навигация, поиск

Участник:Dominica

1970 байт убрано, 06:55, 4 июня 2016
Доказательство корректности и оптимальности
==Доказательство корректности и оптимальности==
 
{{Лемма
|id=lemma1
|statement= Существует оптимальное расписание <tex>S</tex> в котором все <tex>n</tex> задач распределены по всем временам <tex>t_i (i = 1\ldots n)</tex>, которые выбирает приведенный выше алгоритм.
|proof= Предположим, что в некоторое оптимальное расписание <tex>S</tex> входят времена <tex> t_1 \ldots t_j, </tex> где <tex> j < n</tex> и из всех возможных оптимальных расписаний мы возьмем то, у которого <tex>j</tex> будет максимально.
Из того, как в алгоритме выбирались значения для <tex>t_i</tex> следует, что <tex>t_{j + 1}</tex> {{---}} минимальное возможное время, большее <tex>t_j,</tex> в которое можно начать выполнять какое-нибудь из оставшихся заданий. Если во время <tex>t_{j+1}</tex> в расписании <tex>S</tex> не выполняется никакого задания, то какое-то задание, которое могло бы выполнится в момент времени <tex>t_{j+1}</tex> выполняется в <tex>S</tex> позднее. Значит оно может быть перемещено в нашем расписании <tex>S</tex> на время <tex>t_{j+1}</tex> без увеличения целевой функции. Таким образом, наше новое расписание тоже будет оптимальным. Получили противоречие с максимальностью <tex>j</tex>. Значит из всех оптимальных расписаний нам подходят только те, в которых <tex>j = n</tex>.
}}
==См. также ==
264
правки

Навигация