1ripippmtnsumwu — различия между версиями
Swanwarp (обсуждение | вклад) м (→Решение) |
Swanwarp (обсуждение | вклад) (→Решение) |
||
Строка 8: | Строка 8: | ||
== Решение == | == Решение == | ||
− | + | Необходимо найти выполнимое множество работ <tex>O</tex> такое, что его суммарный вес <tex>\sum \limits_{i \in O} w_i</tex> максимален. Эта проблема решается с помощью [[Динамическое программирование | динамического программирования]]. | |
− | |||
− | Необходимо найти выполнимое множество работ <tex>O</tex> такое, что его суммарный вес <tex>\sum \limits_{i \in | ||
Предполагается, что работы отсортированы в порядке неубывания дедлайна. | Предполагается, что работы отсортированы в порядке неубывания дедлайна. | ||
− | === | + | === Алгоритм построения расписания === |
− | + | Пусть у нас есть множества работ <tex>O</tex>, для которых надо составить расписание. Возможны два случая: | |
− | # Если машина освободилась, то вставляем в расписание работу <tex>J_i | + | # Если машина освободилась, то вставляем в расписание работу <tex>J_i</tex> с наименьшим <tex>d_i</tex>. |
− | # Если машина занята работой <tex>J_k</tex> и в момент времени <tex>r_i</tex> появилась работа <tex>J_i</tex>, тогда если <tex>d_i < d_k</tex>, то прервем <tex>J_k</tex> и поставим на выполнение <tex>J_i | + | # Если машина занята работой <tex>J_k</tex> и в момент времени <tex>r_i</tex> появилась работа <tex>J_i</tex>, тогда если <tex>d_i < d_k</tex>, то прервем <tex>J_k</tex> и поставим на выполнение <tex>J_i</tex>. В противном случае просто продолжим выполнение <tex>J_i</tex>. |
− | Можно заметить что, если работа была вставлена в | + | Можно заметить что, если работа была вставлена в расписание после своего дедлайна, то данное множество работ <tex>O</tex> не является выполнимым. Таким образом, решение задачи сводится к нахождению такого множества работ <tex>O</tex>, которое будет выполнимым, если построить его по данному алгоритму, и чей вес будет максимален. |
{{Лемма | {{Лемма | ||
− | |statement=Пусть <tex>\Theta=\{t \mid t = r_i + l \cdot p | + | |statement=Пусть <tex>\Theta=\{t \mid t = r_i + l \cdot p \wedge i = 1, \dots, n \wedge l = 0, \dots, n - 1\}</tex>. Тогда <tex>\forall J_i \in O</tex> время начала <tex>s_i</tex> и время окончания <tex>e_i</tex> этой работы в расписании будет принадлежать <tex>\Theta</tex>. |
|proof= | |proof= | ||
− | Сначала докажем лемму для <tex>e_i</tex>. Пусть <tex>t</tex> - минимальная временная точка такая, что между <tex>t</tex> и <tex>s_i</tex> | + | Сначала докажем лемму для <tex>e_i</tex>. Пусть <tex>t</tex> <tex>-</tex> минимальная временная точка такая, что между <tex>t</tex> и <tex>s_i</tex> станок не простаивает. По структуре расписания <tex>t = r_x</tex>. Работы, которые выполняются между <tex>s_i</tex> и <tex>e_i</tex>, не могут выполняться ни до <tex>s_i</tex>, ни после <tex>e_i</tex>, даже частично. Это следует из структуры алгоритма построения расписания - если работа <tex>J_u</tex> была прервана работой <tex>J_v</tex>, то после выполнения <tex>J_v</tex> мы снова вставляем в расписание <tex>J_u</tex>. Таким образом, <tex>e_i - s_i</tex> делится на <tex>p</tex>. Возможны следующие два случая: |
# <tex>J_i</tex> вызвало прерывание, тогда <tex>s_i = r_i</tex>. | # <tex>J_i</tex> вызвало прерывание, тогда <tex>s_i = r_i</tex>. | ||
# <tex>J_i</tex> не вызывало прерываний, следовательно между <tex>r_x</tex> и <tex>s_i</tex> выполнилось некоторое количество работ, тогда <tex>s_i - r_x</tex> делится на <tex>p</tex>. | # <tex>J_i</tex> не вызывало прерываний, следовательно между <tex>r_x</tex> и <tex>s_i</tex> выполнилось некоторое количество работ, тогда <tex>s_i - r_x</tex> делится на <tex>p</tex>. | ||
− | В любом из этих двух случаев есть такое <tex>r_y = r_x \vee r_i</tex>, такое что | + | В любом из этих двух случаев есть такое <tex>r_y = r_x \vee r_i</tex>, такое что станок не простаивает между <tex>r_y</tex> и <tex>e_i</tex>. Тогда <tex>e_i - r_y</tex> делится на <tex>p</tex>. Следовательно, <tex>e_i - r_y</tex> не превышает <tex>n \cdot p</tex>, так как станок не простаивает. Поэтому <tex>e_i \in \Theta</tex>. |
− | Теперь докажем принадлежность <tex>s_i</tex> к <tex>\Theta</tex>. По структуре | + | Теперь докажем принадлежность <tex>s_i</tex> к <tex>\Theta</tex>. По структуре расписания <tex>s_i</tex> - это либо окончание предыдущей работы <tex>e_u</tex>, либо <tex>r_i</tex>. Таким образом, легко понять, что <tex>s_i \in \Theta</tex>. |
}} | }} | ||
Строка 37: | Строка 35: | ||
|id = def1 | |id = def1 | ||
|definition = <tex>\forall t_u, t_v \in \Theta, u <= v, \forall k = 1, \dots ,n:</tex> | |definition = <tex>\forall t_u, t_v \in \Theta, u <= v, \forall k = 1, \dots ,n:</tex> | ||
− | #<tex>U_k(t_u, t_v) = \{J_i \mid i < k | + | #<tex>U_k(t_u, t_v) = \{J_i \mid i < k \wedge t_u <= r_i < t_v\};</tex> |
− | #<tex>W_k(t_u, t_v, m)</tex> - максимальный вес <tex>Z \subset U_k(t_u, t_v), |Z| = m</tex> такой, что <tex>m \in (1, \dots ,n)</tex> и | + | #<tex>W_k(t_u, t_v, m)</tex> - максимальный вес <tex>Z \subset U_k(t_u, t_v), |Z| = m</tex> такой, что <tex>m \in (1, \dots ,n)</tex> и расписание от <tex>Z</tex> разрешимо и заканчивается до <tex>t_v</tex>. Если такое <tex>Z</tex> существует, будем говорить, что <tex>Z</tex> реализует <tex>W_k(t_u, t_v, m)</tex>. Если же такого <tex>Z</tex> нет, то <tex>W_k(t_u, t_v, m) = - \infty.</tex>}} |
{{Лемма | {{Лемма | ||
Строка 48: | Строка 46: | ||
|proof= | |proof= | ||
− | Если <tex>r_k \notin [t_u, t_v)</tex>, то работа <tex>J_k</tex> не может быть поставлена ни в какой <tex>Z</tex> такой, что | + | Если <tex>r_k \notin [t_u, t_v)</tex>, то работа <tex>J_k</tex> не может быть поставлена ни в какой <tex>Z</tex> такой, что расписание от <tex>Z</tex> разрешимо и <tex>Z \subset U_k(t_u, t_v)</tex>. Тогда, очевидно, что <tex>W_k(t_u, t_v, m) = W_{k-1}(t_u, t_v, m);</tex> |
Строка 60: | Строка 58: | ||
*:# <tex> m_1 + m_2 + m_3 = m - 1</tex>, | *:# <tex> m_1 + m_2 + m_3 = m - 1</tex>, | ||
*:# <tex> p \cdot (m_2 + 1) = t_y - t_x.</tex> | *:# <tex> p \cdot (m_2 + 1) = t_y - t_x.</tex> | ||
− | *: Очевидно, что <tex>U_{k-1}(t_u, t_x), U_{k-1}(t_x, t_y)</tex> и <tex>U_{k-1}(t_y, t_v)</tex> не пересекаются. Следовательно, | + | *: Очевидно, что <tex>U_{k-1}(t_u, t_x), U_{k-1}(t_x, t_y)</tex> и <tex>U_{k-1}(t_y, t_v)</tex> не пересекаются. Следовательно, расписания подмножеств, которые реализуют <tex>W_{k-1}(t_u, t_x, m_1), W_{k-1}(t_x, t_y, m_2)</tex> и <tex>W_{k-1}(t_y, t_v, m_3)</tex>, поставленные друг за другом дадут правильное расписание для <tex>m-1</tex> работ взятых из <tex>U_{k-1}(t_u, t_v)</tex>. Более того, у нас достаточно места чтобы вставить работу <tex>J_k</tex> в промежуток между <tex>t_x</tex> и <tex>t_y</tex>. Это возможно, так как <tex>p \cdot (m_2 + 1) = t_y - t_x</tex> и ровно <tex>m_2</tex> работ распределено для <tex>U_{k-1}(t_x, t_y)</tex>. Таким образом <tex>W'_k \leqslant W_k(t_u, t_v, m)</tex>. |
Строка 67: | Строка 65: | ||
*:Тогда <tex>W_k(t_u, t_v, m) = W_{k-1}(t_u, t_v, m) \leqslant \max(W_{k-1}(t_u, t_v, m), W'_k)</tex>. | *:Тогда <tex>W_k(t_u, t_v, m) = W_{k-1}(t_u, t_v, m) \leqslant \max(W_{k-1}(t_u, t_v, m), W'_k)</tex>. | ||
* <tex>J_k \in Z</tex>. | * <tex>J_k \in Z</tex>. | ||
− | *:Положим <tex>t_x</tex> и <tex>t_y</tex> временем начала выполнения и завершения работы <tex>J_k</tex> в | + | *:Положим <tex>t_x</tex> и <tex>t_y</tex> временем начала выполнения и завершения работы <tex>J_k</tex> в расписании от <tex>Z</tex>. Благодаря предыдущей лемме, мы знаем, что <tex>t_x, t_y \in \Theta</tex>. Также выполняется условие <tex> \max(r_k, t_u) \leqslant t_x < t_y \leqslant \min(d_k, t_v).</tex> Пусть <tex>Z_1, Z_2, Z_3</tex> будут подмножествами <tex>Z/J_k</tex> такими, что все работы в <tex>Z_1, Z_2</tex> и <tex>Z_3</tex> имеют время появления <tex>r_i</tex> в границах <tex>[t_u,t_x)</tex>, <tex>[t_x, t_y)</tex> и <tex>[t_y,t_v)</tex> соответственно. По структуре расписания(работа <tex>J_k</tex> имеет максимальный дедлайн <tex>d_k</tex>) все работы в <tex>Z_1</tex> завершаться до <tex>t_x</tex>. Более того, все работы в <tex>Z_2</tex> начнут выполняться после <tex>t_x</tex> и завершаться до <tex>t_y</tex>, аналогично для <tex>Z_3</tex>. Также <tex>p \cdot (|Z_2| + 1) = t_y - t_x,</tex> так как <tex>J_k</tex> выполнялась в промежутке <tex>[t_x, t_y).</tex> При этом, <tex>|Z_1| + |Z_2| + |Z_3| = m - 1.</tex> Можно заметить, что <tex>weight(Z_1) \leqslant W_{k-1}(t_u, t_x, |Z_1|), weight(Z_2) \leqslant W_{k-2}(t_x, t_y, |Z_2|)</tex> и <tex>weight(Z_3) \leqslant W_{k-1}(t_y, t_v, |Z_3|).</tex> Следовательно, <tex>W_k(t_u, t_v, m) = w_k + \sum\limits_{i = 1}^3weight(Z_i) \leqslant W'_k \leqslant \max(W_{k-1}(t_u, t_v, m), W'_k).</tex> |
Исходя из двух неравенств доказанных выше, можно получить требуемое равенство <tex>W_k(t_u, t_v, m) = \max(W_{k-1}(t_u, t_v, m), W'_k).</tex> Лемма доказана. | Исходя из двух неравенств доказанных выше, можно получить требуемое равенство <tex>W_k(t_u, t_v, m) = \max(W_{k-1}(t_u, t_v, m), W'_k).</tex> Лемма доказана. |
Версия 23:17, 5 июня 2016
Задача: |
Дано | работ и 1 станок. Для каждой работы известны её время появления и вес , а также дедлайн . Время выполнения всех работ равно . Каждую работу можно прервать и продолжить ее выполнение в любой момент времени. Требуется выполнить все работы, чтобы значение (суммарный вес просроченных работ) было минимальным.
Содержание
Решение
Необходимо найти выполнимое множество работ динамического программирования. Предполагается, что работы отсортированы в порядке неубывания дедлайна.
такое, что его суммарный вес максимален. Эта проблема решается с помощьюАлгоритм построения расписания
Пусть у нас есть множества работ
, для которых надо составить расписание. Возможны два случая:- Если машина освободилась, то вставляем в расписание работу с наименьшим .
- Если машина занята работой и в момент времени появилась работа , тогда если , то прервем и поставим на выполнение . В противном случае просто продолжим выполнение .
Можно заметить что, если работа была вставлена в расписание после своего дедлайна, то данное множество работ
не является выполнимым. Таким образом, решение задачи сводится к нахождению такого множества работ , которое будет выполнимым, если построить его по данному алгоритму, и чей вес будет максимален.Лемма: |
Пусть . Тогда время начала и время окончания этой работы в расписании будет принадлежать . |
Доказательство: |
Сначала докажем лемму для . Пусть минимальная временная точка такая, что между и станок не простаивает. По структуре расписания . Работы, которые выполняются между и , не могут выполняться ни до , ни после , даже частично. Это следует из структуры алгоритма построения расписания - если работа была прервана работой , то после выполнения мы снова вставляем в расписание . Таким образом, делится на . Возможны следующие два случая:
В любом из этих двух случаев есть такое , такое что станок не простаивает между и . Тогда делится на . Следовательно, не превышает , так как станок не простаивает. Поэтому .
|
Динамика
Определение: |
|
Лемма: |
|
Доказательство: |
Если , то работа не может быть поставлена ни в какой такой, что расписание от разрешимо и . Тогда, очевидно, что
|
Псевдокод
Отсортировать работы поforeach if for to for to foreach if else Подсчитать по формуле из леммы return
Оценка алгоритма
Заметим, что множество
содержит не более элементов. Следовательно, цикл по итерируется раз. Внутри этого цикла мы тратим времени на подсчет , так как зная и мы можем посчитать и . Также алгоритм использует шестимерный массив для хранения . Таким образом, учитывая итерации алгоритма по и , нам потребуется времени и памяти для работы алгоритма.См. также
Источники информации
Philippe Baptiste - Polynomial Time Algorithms for Minimizing the Weighted Number of Late Jobs on a Single Machine with Equal Processing Times