Задача о монотонных подпоследовательностях, теорема о связи длины НВП и НУП — различия между версиями
Da1s20 (обсуждение | вклад) (→Определения) |
Da1s20 (обсуждение | вклад) |
||
| Строка 1: | Строка 1: | ||
{{В разработке}} | {{В разработке}} | ||
'''Последовательность''' — это набор элементов некоторого множества пронумерованный натуральными числами. Последовательность является результатом последовательного выбора элементов множества. При этом элементы последовательности могут повторяться. В частности, последовательность не является подмножеством заданного множества. | '''Последовательность''' — это набор элементов некоторого множества пронумерованный натуральными числами. Последовательность является результатом последовательного выбора элементов множества. При этом элементы последовательности могут повторяться. В частности, последовательность не является подмножеством заданного множества. | ||
| − | |||
== Определения == | == Определения == | ||
| Строка 30: | Строка 29: | ||
Очевидно, что строго монотонная последовательность является монотонной. | Очевидно, что строго монотонная последовательность является монотонной. | ||
| + | |||
| + | == Теорема о связи длины НВП и НУП == | ||
| + | |||
| + | Длина наибольшей возрастающей подпоследовательности(НВП) равна минимальному количеству наибольших убывающих подпоследовательностей(НУП) на которые её можно разбить. | ||
| + | |||
== Источники == | == Источники == | ||
* [http://ru.wikipedia.org/wiki/%D0%9F%D0%BE%D1%81%D0%BB%D0%B5%D0%B4%D0%BE%D0%B2%D0%B0%D1%82%D0%B5%D0%BB%D1%8C%D0%BD%D0%BE%D1%81%D1%82%D1%8C#.D0.9D.D0.B5.D0.BA.D0.BE.D1.82.D0.BE.D1.80.D1.8B.D0.B5_.D0.B2.D0.B8.D0.B4.D1.8B_.D0.BF.D0.BE.D1.81.D0.BB.D0.B5.D0.B4.D0.BE.D0.B2.D0.B0.D1.82.D0.B5.D0.BB.D1.8C.D0.BD.D0.BE.D1.81.D1.82.D0.B5.D0.B9 Wikipedia Последовательность] | * [http://ru.wikipedia.org/wiki/%D0%9F%D0%BE%D1%81%D0%BB%D0%B5%D0%B4%D0%BE%D0%B2%D0%B0%D1%82%D0%B5%D0%BB%D1%8C%D0%BD%D0%BE%D1%81%D1%82%D1%8C#.D0.9D.D0.B5.D0.BA.D0.BE.D1.82.D0.BE.D1.80.D1.8B.D0.B5_.D0.B2.D0.B8.D0.B4.D1.8B_.D0.BF.D0.BE.D1.81.D0.BB.D0.B5.D0.B4.D0.BE.D0.B2.D0.B0.D1.82.D0.B5.D0.BB.D1.8C.D0.BD.D0.BE.D1.81.D1.82.D0.B5.D0.B9 Wikipedia Последовательность] | ||
Версия 09:03, 3 декабря 2010
Последовательность — это набор элементов некоторого множества пронумерованный натуральными числами. Последовательность является результатом последовательного выбора элементов множества. При этом элементы последовательности могут повторяться. В частности, последовательность не является подмножеством заданного множества.
Определения
Последовательность элементов множества называется неубывающей, если каждый элемент этой последовательности не превосходит следующего за ним.
— неубывающая
Последовательность элементов множества называется невозрастающей, если каждый следующий элемент этой последовательности не превосходит предыдущего.
— невозрастающая
Последовательность элементов множества называется возрастающей, если каждый следующий элемент этой последовательности превышает предыдущий.
— возрастающая
Последовательность элементов множества называется убывающей, если каждый элемент этой последовательности превышает следующий за ним.
— убывающая
Последовательность называется монотонной, если она является неубывающей, либо невозрастающей.
Последовательность называется строго монотонной, если она является возрастающей, либо убывающей.
Очевидно, что строго монотонная последовательность является монотонной.
Теорема о связи длины НВП и НУП
Длина наибольшей возрастающей подпоследовательности(НВП) равна минимальному количеству наибольших убывающих подпоследовательностей(НУП) на которые её можно разбить.