Участник:Qtr/2 — различия между версиями
(Новая страница: «{{Определение |definition= Объединение матроидов <tex>M</tex> = <tex>\langle S,J \rangle</tex> = <tex>\bigcup\limits_{i=1}^{n}</tex...») |
(нет различий)
|
Версия 18:32, 8 июня 2016
Определение: |
Объединение матроидов | = = , где =
Определение: |
Для каждого | построим двудольный ориентированный граф , где , такой что в левой доле находятся вершины из , а в правой — вершины из . Построим ориентированные ребра из в , при условии, что .
Объединим все в один граф , который будет суперпозицией ребер из этих графов.
Определение: |
. = |
Алгоритм
Нам известно, что объединение матроидов — матроид. При поиске базы матроида используется жадный алгоритм. В нем трудность может представлять шаг поиска нового элемента не из текущего множества, который оставит текущее множество независимым. Здесь мы обозначим текущее множество как
. Тогда нужно найти такой элемент , что — снова независимо. Все наши кандидаты находятся в . Если мы найдем путь из в , то элемент , которым путь закончился, можно будет добавить в . То есть шаг жадного алгоритма заключается в создании нового и поиске такого пути.Псевдокод
union(int, int ): int bool reached = false while not reached: reached = true int Graph for i = 1 to n = build_bipartite_graph // Строим двудольный граф D[i] = for : int[] = find_shortest_path( , ) if find_shortest_path( , ) : reached = false int = get_f( ) // Находим , которому принадлежит стартовая вершина в пути int for j = 1 to : int = get_D_by_edge // Находим номер множества, соответствующего ребру for j = 1 to n: = = break
Теорема: |
Для любого имеем существует ориентированный путь из в по ребрам . |
Доказательство: |
Пусть существует путь из в и — самый короткий такой путь. Запишем его вершины как . , так что не умаляя общности можно сказать, что . Для каждого определим множество вершин { }, где пробегает от до . Положим, что , для всех положим . Ясно, что . Для того, чтобы показать независимость в объединении матроидов нужно показать, что для всех . Заметим, что так как мы выбирали путь таким, что он будет наименьшим, для каждого существует единственное паросочетание между элементами, которые мы добавляли и удаляли, чтобы сконструировать . Так как паросочетание единственно, . Аналогично , значит . Следовательно независимо в объединении матроидов.
Пусть нет пути из в по ребрам . Тогда пусть существует множество , состоящее из вершин , из которого мы можем достичь : по допущению . Утверждается, что для всех (что означает, что — максимальное подмножество , независимое в ).Предположим, что это не так. , это возможно только если . Значит существует такой , для которого . Но (по предположению вначале доказательства), значит . Из этого следует, что содержит единственный цикл. Значит существует , такой что . Получается, что — ребро в и оно содержит этот , что противоречит тому как был выбран . Следовательно для всех нам известно : . У нас есть и . Из определния функции ранга объединения матроидов имеем :
и значит — противоречие. |
Источник
Michel X. Goemans. Advanced Combinatorial Optimization. Lecture 13