Слово Фибоначчи — различия между версиями
AMaltsev (обсуждение | вклад) м |
AMaltsev (обсуждение | вклад) |
||
| Строка 45: | Строка 45: | ||
* <tex>f_5 = abaababa</tex> | * <tex>f_5 = abaababa</tex> | ||
| − | == | + | ==Рекуррентное соотношение для строк Фибоначчи== |
{{Лемма | {{Лемма | ||
| + | |about=1 | ||
|statement= Строки Фибоначчи удовлетворяют рекуррентному соотношению <tex>f_n = f_{n-1}f_{n-2}, n \geqslant 2</tex>. | |statement= Строки Фибоначчи удовлетворяют рекуррентному соотношению <tex>f_n = f_{n-1}f_{n-2}, n \geqslant 2</tex>. | ||
|proof= | |proof= | ||
| Строка 90: | Строка 91: | ||
Это равенство походит также и для <tex>f_{\infty}: f_{\infty} = f_{\infty}(f_{n+1},f_{n}) = f_{n+1}f_n f_{n+1} f_{n+1} f_n f_{n+1} f_n f_{n+1} \dots</tex> | Это равенство походит также и для <tex>f_{\infty}: f_{\infty} = f_{\infty}(f_{n+1},f_{n}) = f_{n+1}f_n f_{n+1} f_{n+1} f_n f_{n+1} f_n f_{n+1} \dots</tex> | ||
| + | |||
| + | {{Лемма | ||
| + | |about = 2 | ||
| + | |statement=Для любого целого <tex>n \geqslant 2</tex> выполняется равенство <tex>f^2_n = f_{n+1}f_{n-2}</tex> | ||
| + | |proof= <tex>f_{n+1}f_{n-2}=f_{n}f_{n-1}f_{n-2}=f_{n}f_{n}</tex> | ||
| + | }} | ||
| + | {{Лемма | ||
| + | |about = 3 | ||
| + | |statement= Для любого целого <tex>n \geqslant 3</tex> строка <tex>f_n</tex> имеет [[Основные_определения,_связанные_со_строками#border|бордеры]] <tex>f_i</tex> для <tex>i = n-2, n-4,\dots,2-(n\,\,mod \,\,2)</tex> | ||
| + | }} | ||
| + | |||
{{Утверждение | {{Утверждение | ||
|statement=Бесконечная строка Фибоначчи <tex>f_{\infty}</tex> является решением {{Acronym | задачи построения (2,4)-исключения| Требуется построить бесконечную строковую последовательность на алфавите размером 2, свободную от кратных подстрок порядка 4, но содержащую кратные подстроки порядков 2 и 3 }} | |statement=Бесконечная строка Фибоначчи <tex>f_{\infty}</tex> является решением {{Acronym | задачи построения (2,4)-исключения| Требуется построить бесконечную строковую последовательность на алфавите размером 2, свободную от кратных подстрок порядка 4, но содержащую кратные подстроки порядков 2 и 3 }} | ||
Версия 21:26, 8 июня 2016
| Определение: |
| Строками Фибоначчи (англ. Fibostring) являются строки над алфавитом , полученные последовательным применением морфизма :
|
Содержание
Примеры
Первые несколько строк Фибоначчи:
Рекуррентное соотношение для строк Фибоначчи
| Лемма (1): |
Строки Фибоначчи удовлетворяют рекуррентному соотношению . |
| Доказательство: |
|
Доказательство нетрудно получить методом математической индукции. База: При равенство очевидно. Переход: Пусть и . . Так как отображение — линейно (т.е. ), то можно продолжить равенство: . |
Также можно заметить, что длины строк Фибоначчи совпадают с числами Фибоначчи.
Обобщенная строка Фибоначчи. Связь с задачей о построении -исключений
Начнем обобщение идеи строк Фибоначчи следующим образом. Вместо отдельных символов и будем оперировать двумя произвольными строками :
Таким образом "старый" морфизм будет частным случаем "нового" морфизма при и .
По аналогии можно вычислить , и, наконец, определить -ую обобщенную строку Фибоначчи как:
| Определение: |
| Обобщенная строка Фибоначчи (англ. generalized Fibostring) имеет вид |
Первые несколько обобщенных строк имеют вид:
А также в общем случае:
| Определение: |
| Определим бесконечную обобщенную строку Фибоначчи (англ. generalized infinite Fibostring) как строку, содержащую все строки в качестве префиксов |
Поскольку , то , и, так как , в итоге получаем:
- .
Например:
Это равенство походит также и для
| Лемма (2): |
Для любого целого выполняется равенство |
| Доказательство: |
| Лемма (3): |
Для любого целого строка имеет бордеры для |
| Утверждение: |
Бесконечная строка Фибоначчи является решением задачи построения (2,4)-исключения |
См. также
Источники
- Билл Смит «Методы и алгоритмы вычислений на строках», издательство «Вильямс», 2006 — стр. 100-107