Арифметическое кодирование — различия между версиями
Migan (обсуждение | вклад) (Оформление первого псевдокода в виде функции) |
Migan (обсуждение | вклад) м (Фикс замечаний и источников информации) |
||
Строка 35: | Строка 35: | ||
'''while''' (segment[i].character != eof) | '''while''' (segment[i].character != eof) | ||
</code> | </code> | ||
− | + | ||
− | + | '''Замечание:''' кодировщику и декодировщику должно быть известно, когда завершать работу. Для этого можно передавать в качестве аргумента длину текста или символ конца файла, после которого процесс должен быть остановлен. | |
Для оптимизации размера кода необходимо выбрать из окончательного диапазона число, содержащее наименьшее количество знаков в двоичной записи. | Для оптимизации размера кода необходимо выбрать из окончательного диапазона число, содержащее наименьшее количество знаков в двоичной записи. | ||
Строка 93: | Строка 93: | ||
|<p style="text-align:center;"><tex>a</tex></p>||<p style="text-align:center;"><tex>0.285714</tex></p> | |<p style="text-align:center;"><tex>a</tex></p>||<p style="text-align:center;"><tex>0.285714</tex></p> | ||
|} | |} | ||
− | + | ||
− | + | '''Замечание:''' при декодировании текста можно не только нормализовывать рабочий отрезок и текущий код, но и уменьшать рабочий отрезок (аналогично кодированию), не изменяя значение кода. | |
=== Декодирование (второй способ)=== | === Декодирование (второй способ)=== | ||
Код: <tex>0.411471</tex> | Код: <tex>0.411471</tex> | ||
Строка 126: | Строка 126: | ||
}} | }} | ||
− | == | + | == Источники информации == |
* [http://ru.wikipedia.org/wiki/%D0%90%D1%80%D0%B8%D1%84%D0%BC%D0%B5%D1%82%D0%B8%D1%87%D0%B5%D1%81%D0%BA%D0%BE%D0%B5_%D0%BA%D0%BE%D0%B4%D0%B8%D1%80%D0%BE%D0%B2%D0%B0%D0%BD%D0%B8%D0%B5 Википедия {{---}} Арифметическое кодирование] | * [http://ru.wikipedia.org/wiki/%D0%90%D1%80%D0%B8%D1%84%D0%BC%D0%B5%D1%82%D0%B8%D1%87%D0%B5%D1%81%D0%BA%D0%BE%D0%B5_%D0%BA%D0%BE%D0%B4%D0%B8%D1%80%D0%BE%D0%B2%D0%B0%D0%BD%D0%B8%D0%B5 Википедия {{---}} Арифметическое кодирование] | ||
* [https://en.wikipedia.org/wiki/Arithmetic_coding Wikipedia {{---}} Arithmetic coding] | * [https://en.wikipedia.org/wiki/Arithmetic_coding Wikipedia {{---}} Arithmetic coding] |
Версия 15:33, 17 июня 2016
Арифметическое кодирование (англ. Arithmetic coding) — алгоритм сжатия информации без потерь, который при кодировании ставит в соответствие тексту вещественное число из отрезка алгоритм Хаффмана, является энтропийным, т.е. длина кода конкретного символа зависит от частоты встречаемости этого символа в тексте. Арифметическое кодирование показывает более высокие результаты сжатия, чем алгоритм Хаффмана, для данных с неравномерными распределениями вероятностей кодируемых символов. Кроме того, при арифметическом кодировании каждый символ кодируется нецелым числом бит, что эффективнее кода Хаффмана (теоретически, символу с вероятностью появления допустимо ставить в соответствие код длины , следовательно, при кодировании алгоритмом Хаффмана это достигается только с вероятностями, равными обратным степеням двойки).
. Данный метод, как иСодержание
Принцип действия
Кодирование
На вход алгоритму передаются текст для кодирования и список частот встречаемости символов.
- Рассмотрим отрезок на координатной прямой.
- Поставим каждому символу текста в соответствие отрезок, длина которого равна частоте его появления.
- Считаем символ из входного потока и рассмотрим отрезок, соответствующий этому символу. Разделим этот отрезок на части, пропорциональные частотам встречаемости символов.
- Повторим пункт (3) до конца входного потока.
- Выберем любое число из получившегося отрезка, которое и будет результатом арифметического кодирования.
double ArithmeticCoding (s: string):
left = 0
right = 1
for i = 0 to length(s)-1
read(s[i])
newRight = left + (right - left) * segment[symb].right // segment[symb] — подотрезок отрезка [0; 1), соответствующий символу symb
newLeft = left + (right - left) * segment[symb].left
left = newLeft
right = newRight
return (left + right) / 2
Декодирование
Алгоритм по вещественному числу восстанавливает исходный текст.
- Выберем на отрезке , разделенном на части, длины которых равны вероятностям появления символов в тексте, подотрезок, содержащий входное вещественное число. Символ, соответствующий этому подотрезку, дописываем в ответ.
- Нормируем подотрезок и вещественное число.
- Повторим пункты 1—2 до тех пор, пока не получим ответ (до конца файла).
do for i = 1 to n if code >= segment[i].left and code < segment[i].right write(segment[i].character) code = (code – segment[i].left) / (segment[i].right – segment[i].left) break while (segment[i].character != eof)
Замечание: кодировщику и декодировщику должно быть известно, когда завершать работу. Для этого можно передавать в качестве аргумента длину текста или символ конца файла, после которого процесс должен быть остановлен.
Для оптимизации размера кода необходимо выбрать из окончательного диапазона число, содержащее наименьшее количество знаков в двоичной записи.
Пример работы
Рассмотрим в качестве примера строку
Кодирование
Символ | Частота появления |
---|---|
| |
| |
|
Считанный символ | Левая граница отрезка | Правая граница отрезка |
---|---|---|
| ||
| ||
| ||
| ||
| ||
| ||
| ||
|
Код:
Декодирование
Код:
Декодируемый символ | Код |
---|---|
| |
| |
| |
| |
| |
| |
|
Замечание: при декодировании текста можно не только нормализовывать рабочий отрезок и текущий код, но и уменьшать рабочий отрезок (аналогично кодированию), не изменяя значение кода.
Декодирование (второй способ)
Код:
Декодируемый символ | Границы отрезка | |||
---|---|---|---|---|
| ||||
| ||||
| ||||
| ||||
| ||||
| ||||
|
Оценка длины кодового слова
Теорема: |
При арифметическом кодировании длина кодового слова не превышает энтропии исходного текста. |
Доказательство: |
Размер сообщения Число бит в закодированном тексте: ( — длина текста; — размер алфавита; — частота встречаемости символа; — вероятность вхождения символа) |