Применение метода четырёх русских в задачах ДП на примере задачи о НОП — различия между версиями
(Новая страница: «{{В разработке}} == Описание алгоритма == Рассмотрим задачу о наибольшей общей подпоследова…») |
м (→Описание алгоритма) |
||
| Строка 7: | Строка 7: | ||
Требуется, чтобы <tex>k</tex> делило <tex>n</tex>, но это не является ограничением - можно дописать в конец последовательностей символы, которые не встречались в других местах этих последовательностей (символы для каждой последовательности должны быть разными). Тогда ответ на задачу не изменится, а длину можно "довести" до делителя <tex>k</tex>. | Требуется, чтобы <tex>k</tex> делило <tex>n</tex>, но это не является ограничением - можно дописать в конец последовательностей символы, которые не встречались в других местах этих последовательностей (символы для каждой последовательности должны быть разными). Тогда ответ на задачу не изменится, а длину можно "довести" до делителя <tex>k</tex>. | ||
| − | + | Сделаем предподсчёт действия каждого возможного квадрата. Окончательный результат зависит только от значений в верхнем левом "уголке" квадрата и подстрок, для которых считается ответ {{---}} остальные значения в квадрате однозначно считаются с их помощью. Окончательным результатом будут значения в нижнем правом "уголке" квадрата. | |
Может показаться, что таких уголков может быть много. Но, так как соседние числа в матрице отличаются не более, чем на один, то результат зависит только от константы в верхнем левом элементе матрицы, и возрастания чисел в верхнем и левом крае квадрата. Возрастание чисел будем хранить с помощью битовых масок: сначала <tex>k - 1</tex> бит кодирует возрастание чисел в верхнем крае квадрата (0 - элемент равен предыдущему, 1 - больше предыдущего на один), потом <tex>k - 1</tex> бит кодируют возрастание чисел в квадрате по левому краю аналогичным образом. | Может показаться, что таких уголков может быть много. Но, так как соседние числа в матрице отличаются не более, чем на один, то результат зависит только от константы в верхнем левом элементе матрицы, и возрастания чисел в верхнем и левом крае квадрата. Возрастание чисел будем хранить с помощью битовых масок: сначала <tex>k - 1</tex> бит кодирует возрастание чисел в верхнем крае квадрата (0 - элемент равен предыдущему, 1 - больше предыдущего на один), потом <tex>k - 1</tex> бит кодируют возрастание чисел в квадрате по левому краю аналогичным образом. | ||
| − | Более того, константу в верхнем левом элементе квадрата можно вообще не хранить - её можно прибавить при | + | Более того, константу в верхнем левом элементе квадрата можно вообще не хранить - её можно прибавить при необходимости к каждому элементу результата. |
| − | Итого, получается <tex>{\left (2|\Sigma| \right )}^{2k}</tex> | + | Итого, получается <tex>{\left (2|\Sigma| \right )}^{2k}</tex> предподсчитанных квадратов, подсчёт каждого происходит за время, пропорциональное <tex>k^2</tex>. |
После этого ответ для самой задачи НОП считается аналогично обычному алгоритму, только на этот раз пересчитывается не каждый элемент матрицы, а только уголки. | После этого ответ для самой задачи НОП считается аналогично обычному алгоритму, только на этот раз пересчитывается не каждый элемент матрицы, а только уголки. | ||
Версия 05:36, 6 декабря 2010
Описание алгоритма
Рассмотрим задачу о наибольшей общей подпоследовательности для двух последовательностей одинаковой длины. Тогда таблица динамического программирования имеет размер . Разобьём её на квадраты размера следующим образом: выделим каждую -ую строчку, начиная с первой. Аналогично выделяем столбцы.
Требуется, чтобы делило , но это не является ограничением - можно дописать в конец последовательностей символы, которые не встречались в других местах этих последовательностей (символы для каждой последовательности должны быть разными). Тогда ответ на задачу не изменится, а длину можно "довести" до делителя .
Сделаем предподсчёт действия каждого возможного квадрата. Окончательный результат зависит только от значений в верхнем левом "уголке" квадрата и подстрок, для которых считается ответ — остальные значения в квадрате однозначно считаются с их помощью. Окончательным результатом будут значения в нижнем правом "уголке" квадрата.
Может показаться, что таких уголков может быть много. Но, так как соседние числа в матрице отличаются не более, чем на один, то результат зависит только от константы в верхнем левом элементе матрицы, и возрастания чисел в верхнем и левом крае квадрата. Возрастание чисел будем хранить с помощью битовых масок: сначала бит кодирует возрастание чисел в верхнем крае квадрата (0 - элемент равен предыдущему, 1 - больше предыдущего на один), потом бит кодируют возрастание чисел в квадрате по левому краю аналогичным образом.
Более того, константу в верхнем левом элементе квадрата можно вообще не хранить - её можно прибавить при необходимости к каждому элементу результата.
Итого, получается предподсчитанных квадратов, подсчёт каждого происходит за время, пропорциональное .
После этого ответ для самой задачи НОП считается аналогично обычному алгоритму, только на этот раз пересчитывается не каждый элемент матрицы, а только уголки.
Время работы
Суммарное время работы алгоритма . Понятно, что для получения выигрыша в производительности по сравнению с обычным алгоритмом необходимо, чтобы первое слагаемое не превышало второе. Это достигается при условии