Алгоритм Джонсона — различия между версиями
Строка 11: | Строка 11: | ||
Пусть <tex> \varphi : V \rightarrow \mathbb R </tex> — произвольное отображение из множества вершин в вещественные числа. Тогда новой весовой функцией будет <tex> \omega_\varphi(u, v) = \omega(u, v) + \varphi(u) - \varphi(v) </tex>. | Пусть <tex> \varphi : V \rightarrow \mathbb R </tex> — произвольное отображение из множества вершин в вещественные числа. Тогда новой весовой функцией будет <tex> \omega_\varphi(u, v) = \omega(u, v) + \varphi(u) - \varphi(v) </tex>. | ||
− | Такая потенциальная функция строится | + | Такая потенциальная функция строится добавлем фиктивной вершины <tex> s </tex> в <tex> G </tex>, из которой проведены ориентированные ребра нулевого веса во все остальные вершины графа, и запуском [[Алгоритм Форда-Беллмана|алгоритма Форда-Беллмана]] из нее (<tex> \varphi(v) </tex> будет равно длине кратчайшего пути из <tex> s </tex> в <tex> v </tex>). На этом же этапе мы сможем обнаружить наличие отрицательного цикла в графе. |
Теперь, когда мы знаем, что веса всех ребер неотрицательны, и кратчайшие пути сохранятся, можно запустить [[Алгоритм Дейкстры|алгоритм Дейкстры]] из каждой вершины и таким образом найти кратчайшие расстояния между всеми парами вершин. | Теперь, когда мы знаем, что веса всех ребер неотрицательны, и кратчайшие пути сохранятся, можно запустить [[Алгоритм Дейкстры|алгоритм Дейкстры]] из каждой вершины и таким образом найти кратчайшие расстояния между всеми парами вершин. |
Версия 22:48, 13 сентября 2016
Алгоритм Джонсона (англ. Johnson's algorithm) находит кратчайшие пути между всеми парами вершин во взвешенном ориентированном графе с любыми весами ребер, но не имеющем отрицательных циклов.
Содержание
Алгоритм
Описание
Алгоритм Джонсона позволяет найти кратчайшие пути между всеми парами вершин в течение времени алгоритма Флойда. Этот алгоритм либо возвращает матрицу кратчайших расстояний между всеми парами вершин, либо сообщение о том, что в графе существует цикл отрицательной длины.
. Для разреженных графов этот алгоритм ведет себя асимптотически быстрееВ этом алгоритме используется метод изменения веса (англ. reweighting). Суть его заключается в том, что для заданного графа потенциальной функции.
строится новая весовая функция , неотрицательная для всех ребер графа и сохраняющая кратчайшие пути. Такая весовая функция строится с помощью так называемойПусть
— произвольное отображение из множества вершин в вещественные числа. Тогда новой весовой функцией будет .Такая потенциальная функция строится добавлем фиктивной вершины алгоритма Форда-Беллмана из нее ( будет равно длине кратчайшего пути из в ). На этом же этапе мы сможем обнаружить наличие отрицательного цикла в графе.
в , из которой проведены ориентированные ребра нулевого веса во все остальные вершины графа, и запускомТеперь, когда мы знаем, что веса всех ребер неотрицательны, и кратчайшие пути сохранятся, можно запустить алгоритм Дейкстры из каждой вершины и таким образом найти кратчайшие расстояния между всеми парами вершин.
Сохранение кратчайших путей
Утверждается, что если какой-то путь
был кратчайшим относительно весовой функции , то он будет кратчайшим и относительно новой весовой функции .Лемма: |
Пусть — два пути и Тогда |
Доказательство: |
|
Теорема о существовании потенциальной функции
Теорема: |
В графе нет отрицательных циклов существует потенциальная функция |
Доказательство: |
: Рассмотрим произвольный — цикл в графе
: Добавим фиктивную вершину в граф, а также ребра весом для всех .
|
Псевдокод
Предварительно построим граф
, где , , аfunction Johnson(G): int[][] if BellmanFord== false print "Входной граф содержит цикл с отрицательным весом" return else for = // вычислено алгоритмом Беллмана — Форда for = for Dijkstra for return
Итого, в начале алгоритм Форда-Беллмана либо строит потенциальную функцию такую, что после перевзвешивания все веса ребер будут неотрицательны, либо выдает сообщение о том, что в графе присутствует отрицательный цикл.
Затем из каждой вершины запускается алгоритм Дейкстры для составления искомой матрицы. Так как все веса ребер теперь неотрицательны, алгоритм Дейкстры будет работать корректно. А поскольку перевзвешивание таково, что кратчайшие пути относительно обеих весовых функций совпадают, алгоритм Джонсона в итоге корректно найдет все кратчайшие пути между всеми парами вершин.
Сложность
Алгоритм Джонсона работает за алгоритма Дейкстры. Если в алгоритме Дейкстры неубывающая очередь с приоритетами реализована в виде фибоначчиевой кучи, то время работы алгоритма Джонсона есть . В случае реализации очереди с приоритетами в виде двоичной кучи время работы равно .
, где — время работыСм. также
Источники информации
- Кормен Т., Лейзерсон Ч., Ривест Р. Алгоритмы: построение и анализ. 2-е изд. — М.: Издательский дом «Вильямс», 2007. — С. 1296.
- Визуализатор алгоритма