Формальные грамматики — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
(Определения)
Строка 10: Строка 10:
 
|definition =
 
|definition =
 
'''<tex>\beta</tex> выводится из <tex>\alpha</tex> за один шаг''' <tex>(\alpha \Rightarrow \beta)</tex>:
 
'''<tex>\beta</tex> выводится из <tex>\alpha</tex> за один шаг''' <tex>(\alpha \Rightarrow \beta)</tex>:
# <tex>\alpha=\alpha_1\alpha_2\alpha_3</tex>;
+
# <tex>\alpha=\alpha_1\alpha_2\alpha_3</tex>
# <tex>\beta=\beta_1\beta_2\beta_3</tex>;
+
# <tex>\beta=\beta_1\beta_2\beta_3</tex>
 
# <tex>\alpha_1=\beta_1</tex>, <tex>\alpha_3=\beta_3</tex>, <tex>\alpha_2\rightarrow\beta_2 \in P</tex>.
 
# <tex>\alpha_1=\beta_1</tex>, <tex>\alpha_3=\beta_3</tex>, <tex>\alpha_2\rightarrow\beta_2 \in P</tex>.
 
}}
 
}}
Строка 40: Строка 40:
 
==Примеры грамматик==
 
==Примеры грамматик==
 
===Правильные скобочные последовательности===
 
===Правильные скобочные последовательности===
<tex>\Sigma = \{(, )\}</tex>;
+
<tex>\Sigma = \{(, )\}</tex>
 
<br/>
 
<br/>
 
<tex>\begin{array}{lcr}
 
<tex>\begin{array}{lcr}
Строка 57: Строка 57:
  
 
===Арифметические выражения===
 
===Арифметические выражения===
<tex>\Sigma = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, +, *, /, -, (, )\}</tex>;
+
<tex>\Sigma = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, +, *, /, -, (, )\}</tex>
 
<br/>
 
<br/>
  
Строка 66: Строка 66:
 
S \rightarrow DN\\
 
S \rightarrow DN\\
 
O \rightarrow +  \mid -  \mid *  \mid /\\
 
O \rightarrow +  \mid -  \mid *  \mid /\\
D \rightarrow 1  \mid 2  \mid 3  \mid 4  \mid 5  \mid 6  \mid 7  \mid 8  \mid 9;\\
+
D \rightarrow 1  \mid 2  \mid 3  \mid 4  \mid 5  \mid 6  \mid 7  \mid 8  \mid 9\\
 
N \rightarrow NN  \mid \varepsilon\\
 
N \rightarrow NN  \mid \varepsilon\\
 
N \rightarrow 0  \mid 1  \mid 2  \mid 3  \mid 4  \mid 5  \mid 6  \mid 7  \mid 8  \mid 9.
 
N \rightarrow 0  \mid 1  \mid 2  \mid 3  \mid 4  \mid 5  \mid 6  \mid 7  \mid 8  \mid 9.
Строка 80: Строка 80:
 
Данный язык является [[Иерархия Хомского формальных грамматик#Класс 1 |контекстно-зависимым]]. КЗ-грамматика для языка приведена ниже, а через [[Лемма о разрастании для КС-грамматик#Пример доказательства неконтекстно-свободности языка с использованием леммы | лемму о разрастании]] доказывается его неконтекстно-свободность.
 
Данный язык является [[Иерархия Хомского формальных грамматик#Класс 1 |контекстно-зависимым]]. КЗ-грамматика для языка приведена ниже, а через [[Лемма о разрастании для КС-грамматик#Пример доказательства неконтекстно-свободности языка с использованием леммы | лемму о разрастании]] доказывается его неконтекстно-свободность.
  
<tex>\Sigma = \{0, 1, 2\}</tex>;
+
<tex>\Sigma = \{0, 1, 2\}</tex>
  
 
<tex>
 
<tex>

Версия 16:16, 11 октября 2016

Определения

Определение:
Формальная грамматика (англ. Formal grammar) — способ описания формального языка, представляющий собой четверку [math]\Gamma =\langle \Sigma, N, S \in N, P \subset N^{+}\times (\Sigma\cup N)^{*}\rangle[/math], где [math]\Sigma[/math]алфавит, элементы которого называют терминалами (англ. terminals), [math]N[/math] — множество, элементы которого называют нетерминалами (англ. nonterminals), [math]S[/math] — начальный символ грамматики (англ. start symbol), [math]P[/math] — набор правил вывода (англ. production rules или productions) [math]\alpha\rightarrow \beta[/math].


Определение:
[math]\beta[/math] выводится из [math]\alpha[/math] за один шаг [math](\alpha \Rightarrow \beta)[/math]:
  1. [math]\alpha=\alpha_1\alpha_2\alpha_3[/math]
  2. [math]\beta=\beta_1\beta_2\beta_3[/math]
  3. [math]\alpha_1=\beta_1[/math], [math]\alpha_3=\beta_3[/math], [math]\alpha_2\rightarrow\beta_2 \in P[/math].


Определение:
[math]\beta[/math] выводится из [math]\alpha[/math] за ноль или более шагов [math](\alpha \Rightarrow^* \beta)[/math]: [math]\exists \gamma_1, \gamma_2, \ldots,\gamma_n : \alpha \Rightarrow \gamma_1 \Rightarrow \gamma_2 \Rightarrow \ldots \Rightarrow \gamma_n \Rightarrow \beta[/math] ( Рефлексивно-транзитивное замыкание отношения [math]\Rightarrow[/math]).


Определение:
Языком грамматики (англ. Language of grammar) называется [math]L(\Gamma) = \{\omega \in \Sigma^{*} \mid S \Rightarrow^{*}\omega\}[/math].


Определение:
Сентенциальная форма (англ. Sentential form) — последовательность терминалов и нетерминалов, выводимых из начального символа.


Обозначения

  • Нетерминалы обозначаются заглавными буквами латинского алфавита.
  • Терминалы обозначаются строчными буквами из начала латинского алфавита.
  • Последовательности из терминалов (слова) обозначают строчными буквами из конца латинского или греческого алфавита.
  • Последовательности из терминалов и нетерминалов обозначаются строчными буквами из начала греческого алфавита.

Примеры грамматик

Правильные скобочные последовательности

[math]\Sigma = \{(, )\}[/math]
[math]\begin{array}{lcr} S \to (S) \\ S \to SS \\ S \to \varepsilon \end{array} [/math]

Вывод строки [math](()())[/math]:
[math]S\to(S)\to(SS)\to((S)S)\to((S)(S))\to(()(S))\to(()())[/math].

Вывод строки [math]((()())(()))[/math]:
[math]S\to(S)\to(SS)\rightarrow((S)S)\rightarrow((S)(S))\rightarrow[/math]
[math]\rightarrow((SS)((S)))\rightarrow (((S)S)((S))) \rightarrow ((()S)((S)))\rightarrow[/math]
[math]\rightarrow((()(S))((S)))\rightarrow ((()())((S)))\rightarrow ((()())(()))[/math].

Арифметические выражения

[math]\Sigma = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, +, *, /, -, (, )\}[/math]

[math]\begin{array}{lcr} S \rightarrow S O S\\ S \rightarrow (S)\\ S \rightarrow 0\\ S \rightarrow DN\\ O \rightarrow + \mid - \mid * \mid /\\ D \rightarrow 1 \mid 2 \mid 3 \mid 4 \mid 5 \mid 6 \mid 7 \mid 8 \mid 9\\ N \rightarrow NN \mid \varepsilon\\ N \rightarrow 0 \mid 1 \mid 2 \mid 3 \mid 4 \mid 5 \mid 6 \mid 7 \mid 8 \mid 9. \end{array} [/math]

Вывод строки [math]2+2*2[/math]: [math]S \rightarrow SOS \rightarrow SOSOS \rightarrow 2OSOS \rightarrow 2O2OS \rightarrow 2O2O2 \rightarrow 2+2O2 \rightarrow 2+2*2[/math].

Левосторонний вывод этой же строки: [math]S \rightarrow SOS \rightarrow 2OS \rightarrow 2+S \rightarrow 2+SOS \rightarrow 2+2OS \rightarrow 2+2*S \rightarrow 2+2*2[/math].

Язык [math]0^n1^n2^n[/math]

Данный язык является контекстно-зависимым. КЗ-грамматика для языка приведена ниже, а через лемму о разрастании доказывается его неконтекстно-свободность.

[math]\Sigma = \{0, 1, 2\}[/math]

[math] $S $ \rightarrow 012 \\ $S $ \rightarrow 0$TS$2 \\ $T$0 \rightarrow 0$T$ \\ $T$1 \rightarrow 11 [/math]

Вывод строки [math]000111222[/math] :

[math] $S $ \rightarrow 0$TS$2 \rightarrow 0$T0TS$22 \rightarrow 0$T0T$01222 \rightarrow 0$T00T1$222 \rightarrow \\ \rightarrow 00$T0T$1222 \rightarrow 000$TT$1222 \rightarrow 000$T$11222 \rightarrow 000111222. [/math]

См. также

Источники информации

  • Wikipedia — Formal grammar
  • Wikipedia — Formal language
  • Хопкрофт Д., Мотвани Р., Ульман Д. — Введение в теорию автоматов, языков и вычислений, 2-е изд. : Пер. с англ. — Москва, Издательский дом «Вильямс», 2002. — 528 с. : ISBN 5-8459-0261-4 (рус.)