Теорема о существовании простого пути в случае существования пути — различия между версиями
(→Теорема о существовании простого пути в случае существования пути) |
(→Теорема о существовании простого пути в случае существования пути) |
||
Строка 7: | Строка 7: | ||
|proof= | |proof= | ||
− | === | + | === Конструктивное доказательство === |
Возьмём любой из существующих путей между нужными нам вершинами: <tex>v_0e_1v_1e_2v_2 ... e_nv_n</tex>. | Возьмём любой из существующих путей между нужными нам вершинами: <tex>v_0e_1v_1e_2v_2 ... e_nv_n</tex>. | ||
Строка 17: | Строка 17: | ||
Начнём процесс с вершины <tex>v_0</tex> и будем повторять его каждый раз для следующей вершины нового пути, пока не дойдём до последней. По построению, получившийся путь будет содержать каждую из вершин графа не более одного раза, а значит, будет простым. | Начнём процесс с вершины <tex>v_0</tex> и будем повторять его каждый раз для следующей вершины нового пути, пока не дойдём до последней. По построению, получившийся путь будет содержать каждую из вершин графа не более одного раза, а значит, будет простым. | ||
− | === | + | === Неконструктивное доказательство === |
Выберем из всех путей между данными вершинами путь наименьшей длины. | Выберем из всех путей между данными вершинами путь наименьшей длины. | ||
Версия 10:52, 16 октября 2016
Содержание
Теорема о существовании простого пути в случае существования пути
Теорема: |
Если между двумя вершинами графа существует путь, то между ними существует вершинно-простой путь. |
Доказательство: |
Конструктивное доказательствоВозьмём любой из существующих путей между нужными нам вершинами: .
1. Для вершинынайдём момент её последнего вхождения в путь — . 2. Удалим отрезок пути от до , включительно. Получившаяся последовательность вершин и рёбер графа останется путём от до , и в нём вершина будет содержаться ровно один раз. Начнём процесс с вершины и будем повторять его каждый раз для следующей вершины нового пути, пока не дойдём до последней. По построению, получившийся путь будет содержать каждую из вершин графа не более одного раза, а значит, будет простым.Неконструктивное доказательствоВыберем из всех путей между данными вершинами путь наименьшей длины. Предположение: Пусть он не простой.Тогда в нём содержатся две одинаковые вершины , . Удалим из исходного пути отрезок от до , включительно. Конечная последовательность также будет путём от до и станет короче исходной. Получено противоречие с условием: взятый нами путь оказался не кратчайшим. Значит, предположение неверно, выбранный путь — простой. |
Замечания
- Так как вершинно-простой путь всегда является рёберно-простым, данная теорема справедлива и для рёберно-простого пути.
- Теорема может быть сформулирована как для ориентированного, так и для неориентированного графа.