Теорема о существовании простого пути в случае существования пути — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
(Теорема о существовании простого пути в случае существования пути)
(Теорема о существовании простого пути в случае существования пути)
Строка 4: Строка 4:
 
{{Теорема
 
{{Теорема
 
|statement=
 
|statement=
Если между двумя [[Основные определения теории графов|вершинами графа]] существует [[Основные определения теории графов|путь]], то между ними существует вершинно-простой путь.
+
Если между двумя [[Основные определения теории графов|вершинами графа]] существует [[Основные определения теории графов|путь]], то между ними существует [[Основные определения теории графов|вершинно-простой]] путь.
 
|proof=
 
|proof=
  
Строка 15: Строка 15:
 
Удалим отрезок пути от <tex>e_{i+1}</tex> до <tex>v_j</tex>, включительно.
 
Удалим отрезок пути от <tex>e_{i+1}</tex> до <tex>v_j</tex>, включительно.
 
Получившаяся последовательность вершин и рёбер графа останется путём от <tex>v_0</tex> до <tex>v_n</tex>, и в нём вершина <tex>v_i</tex> будет содержаться ровно один раз.
 
Получившаяся последовательность вершин и рёбер графа останется путём от <tex>v_0</tex> до <tex>v_n</tex>, и в нём вершина <tex>v_i</tex> будет содержаться ровно один раз.
Начнём процесс с вершины <tex>v_0</tex> и будем повторять его каждый раз  для следующей вершины нового пути, пока не дойдём до последней. По построению, получившийся путь будет содержать каждую из вершин графа не более одного раза, а значит, будет простым.
+
Начнём процесс с вершины <tex>v_0</tex> и будем повторять его каждый раз  для следующей вершины нового пути, пока не дойдём до последней. По построению, получившийся путь будет содержать каждую из вершин графа не более одного раза, а значит, будет вершинно-простым.
  
 
=== Неконструктивное доказательство ===
 
=== Неконструктивное доказательство ===

Версия 11:02, 16 октября 2016

Ориентированный граф. Красным выделен вершинно-простой путь. Синим — реберно-простой путь.

Теорема о существовании простого пути в случае существования пути

Теорема:
Если между двумя вершинами графа существует путь, то между ними существует вершинно-простой путь.
Доказательство:
[math]\triangleright[/math]

Конструктивное доказательство

Возьмём любой из существующих путей между нужными нам вершинами: [math]v_0e_1v_1e_2v_2 ... e_nv_n[/math].

  • Алгоритм:

Для вершины [math]v_i[/math] найдём момент её последнего вхождения в путь — [math]v_j[/math]. Удалим отрезок пути от [math]e_{i+1}[/math] до [math]v_j[/math], включительно. Получившаяся последовательность вершин и рёбер графа останется путём от [math]v_0[/math] до [math]v_n[/math], и в нём вершина [math]v_i[/math] будет содержаться ровно один раз. Начнём процесс с вершины [math]v_0[/math] и будем повторять его каждый раз для следующей вершины нового пути, пока не дойдём до последней. По построению, получившийся путь будет содержать каждую из вершин графа не более одного раза, а значит, будет вершинно-простым.

Неконструктивное доказательство

Выберем из всех путей между данными вершинами путь наименьшей длины.

  • Предположение:

Пусть он не простой.

Тогда в нём содержатся две одинаковые вершины [math]v_i = v_j[/math], [math]i \lt j[/math]. Удалим из исходного пути отрезок от [math]e_{i+1}[/math] до [math]v_j[/math], включительно. Конечная последовательность также будет путём от [math]v_0[/math] до [math]v_n[/math] и станет короче исходной. Получено противоречие с условием: взятый нами путь оказался не кратчайшим. Значит, предположение неверно, выбранный путь — простой.
[math]\triangleleft[/math]

Замечания

  • Так как вершинно-простой путь всегда является рёберно-простым, данная теорема справедлива и для рёберно-простого пути.
  • Теорема может быть сформулирована как для ориентированного, так и для неориентированного графа.

См. также