Теорема о существовании простого пути в случае существования пути — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
(Теорема о существовании простого пути в случае существования пути)
Строка 1: Строка 1:
[[Файл:Simple way.png|thumb|250px|right|Ориентированный граф. <font color=#ED1C24>Красным</font> выделен вершинно-простой путь. <font color=#3771c8ff>Синим</font> {{---}} реберно-простой путь.]]
+
 
  
 
==Теорема о существовании простого пути в случае существования пути==
 
==Теорема о существовании простого пути в случае существования пути==
Строка 6: Строка 6:
 
Если между двумя [[Основные определения теории графов|вершинами графа]] существует [[Основные определения теории графов|путь]], то между ними существует [[Основные определения теории графов|вершинно-простой путь]].
 
Если между двумя [[Основные определения теории графов|вершинами графа]] существует [[Основные определения теории графов|путь]], то между ними существует [[Основные определения теории графов|вершинно-простой путь]].
 
|proof=
 
|proof=
 +
 +
[[Файл:Simple way.png|thumb|250px|right|Ориентированный граф. <font color=#ED1C24>Красным</font> выделен вершинно-простой путь. <font color=#3771c8ff>Синим</font> {{---}} реберно-простой путь.]]
  
 
=== Конструктивное доказательство ===
 
=== Конструктивное доказательство ===

Версия 11:06, 16 октября 2016


Теорема о существовании простого пути в случае существования пути

Теорема:
Если между двумя вершинами графа существует путь, то между ними существует вершинно-простой путь.
Доказательство:
[math]\triangleright[/math]
Ориентированный граф. Красным выделен вершинно-простой путь. Синим — реберно-простой путь.

Конструктивное доказательство

Возьмём любой из существующих путей между нужными нам вершинами: [math]v_0e_1v_1e_2v_2 ... e_nv_n[/math].

  • Алгоритм:

Для вершины [math]v_i[/math] найдём момент её последнего вхождения в путь — [math]v_j[/math]. Удалим отрезок пути от [math]e_{i+1}[/math] до [math]v_j[/math], включительно. Получившаяся последовательность вершин и рёбер графа останется путём от [math]v_0[/math] до [math]v_n[/math], и в нём вершина [math]v_i[/math] будет содержаться ровно один раз. Начнём процесс с вершины [math]v_0[/math] и будем повторять его каждый раз для следующей вершины нового пути, пока не дойдём до последней. По построению, получившийся путь будет содержать каждую из вершин графа не более одного раза, а значит, будет вершинно-простым.

Неконструктивное доказательство

Выберем из всех путей между данными вершинами путь наименьшей длины.

  • Предположение:

Пусть он не простой.

Тогда в нём содержатся две одинаковые вершины [math]v_i = v_j[/math], [math]i \lt j[/math]. Удалим из исходного пути отрезок от [math]e_{i+1}[/math] до [math]v_j[/math], включительно. Конечная последовательность также будет путём от [math]v_0[/math] до [math]v_n[/math] и станет короче исходной. Получено противоречие с условием: взятый нами путь оказался не кратчайшим. Значит, предположение неверно, выбранный путь — простой.
[math]\triangleleft[/math]

Замечания

  • Так как вершинно-простой путь всегда является рёберно-простым, данная теорема справедлива и для рёберно-простого пути.
  • Теорема может быть сформулирована как для ориентированного, так и для неориентированного графа.

См. также