Теорема о существовании простого пути в случае существования пути — различия между версиями
(→Теорема о существовании простого пути в случае существования пути) |
|||
Строка 1: | Строка 1: | ||
− | + | ||
==Теорема о существовании простого пути в случае существования пути== | ==Теорема о существовании простого пути в случае существования пути== | ||
Строка 6: | Строка 6: | ||
Если между двумя [[Основные определения теории графов|вершинами графа]] существует [[Основные определения теории графов|путь]], то между ними существует [[Основные определения теории графов|вершинно-простой путь]]. | Если между двумя [[Основные определения теории графов|вершинами графа]] существует [[Основные определения теории графов|путь]], то между ними существует [[Основные определения теории графов|вершинно-простой путь]]. | ||
|proof= | |proof= | ||
+ | |||
+ | [[Файл:Simple way.png|thumb|250px|right|Ориентированный граф. <font color=#ED1C24>Красным</font> выделен вершинно-простой путь. <font color=#3771c8ff>Синим</font> {{---}} реберно-простой путь.]] | ||
=== Конструктивное доказательство === | === Конструктивное доказательство === |
Версия 11:06, 16 октября 2016
Содержание
Теорема о существовании простого пути в случае существования пути
Теорема: |
Доказательство: |
Конструктивное доказательствоВозьмём любой из существующих путей между нужными нам вершинами: .
Для вершины найдём момент её последнего вхождения в путь — . Удалим отрезок пути от до , включительно. Получившаяся последовательность вершин и рёбер графа останется путём от до , и в нём вершина будет содержаться ровно один раз. Начнём процесс с вершины и будем повторять его каждый раз для следующей вершины нового пути, пока не дойдём до последней. По построению, получившийся путь будет содержать каждую из вершин графа не более одного раза, а значит, будет вершинно-простым.Неконструктивное доказательствоВыберем из всех путей между данными вершинами путь наименьшей длины.
Пусть он не простой. Тогда в нём содержатся две одинаковые вершины , . Удалим из исходного пути отрезок от до , включительно. Конечная последовательность также будет путём от до и станет короче исходной. Получено противоречие с условием: взятый нами путь оказался не кратчайшим. Значит, предположение неверно, выбранный путь — простой. |
Замечания
- Так как вершинно-простой путь всегда является рёберно-простым, данная теорема справедлива и для рёберно-простого пути.
- Теорема может быть сформулирована как для ориентированного, так и для неориентированного графа.