Теорема о существовании простого пути в случае существования пути — различия между версиями
Shersh (обсуждение | вклад) м (→Теорема о существовании простого пути в случае существования пути) |
|||
Строка 5: | Строка 5: | ||
Если между двумя [[Основные определения теории графов|вершинами графа]] существует [[Основные определения теории графов|путь]], то между ними существует [[Основные определения теории графов|вершинно-простой путь]]. | Если между двумя [[Основные определения теории графов|вершинами графа]] существует [[Основные определения теории графов|путь]], то между ними существует [[Основные определения теории графов|вершинно-простой путь]]. | ||
|proof = | |proof = | ||
− | |||
=== Конструктивное доказательство === | === Конструктивное доказательство === | ||
− | Рассмотрим путь: <tex>v_0e_1v_1e_2v_2 \ldots e_nv_n</tex> между вершинами <tex>v_0</tex> и <tex>v_n</tex>. Возьмем <tex>v_i</tex> {{---}} вершина на данном пути. Если она лежит на данном пути более одного раза, то она принадлежит какому-то (не обязательно простому) циклу <tex>v_ie_{i+1}v_{i+1}e_{i+2} \ldots v_{j=i}</tex>. Удалим этот цикл. Получившаяся последовательность вершин и рёбер графа останется путём <tex>v_0 \ldots v_n</tex>, но не будет содержать найденный цикл. Начнём процесс с вершины <tex>v_0</tex> и будем повторять его каждый раз для следующей вершины нового пути, пока не дойдём до последней. По построению, получившийся путь будет содержать каждую из вершин графа не более одного раза, а значит, будет вершинно-простым. | + | Рассмотрим путь: <tex>v_0e_1v_1e_2v_2 \ldots e_nv_n</tex> между вершинами <tex>v_0</tex> и <tex>v_n</tex>, причём <tex>v_0 \neq v_n</tex>. Возьмем <tex>v_i</tex> {{---}} вершина на данном пути. Если она лежит на данном пути более одного раза, то она принадлежит какому-то (не обязательно простому) циклу <tex>v_ie_{i+1}v_{i+1}e_{i+2} \ldots v_{j=i}</tex>. Удалим этот цикл. Получившаяся последовательность вершин и рёбер графа останется путём <tex>v_0 \ldots v_n</tex>, но не будет содержать найденный цикл. Начнём процесс с вершины <tex>v_0</tex> и будем повторять его каждый раз для следующей вершины нового пути, пока не дойдём до последней. По построению, получившийся путь будет содержать каждую из вершин графа не более одного раза, а значит, будет вершинно-простым. |
=== Неконструктивное доказательство === | === Неконструктивное доказательство === | ||
Строка 20: | Строка 19: | ||
|proof = В данном случае мы не сможем найти вершинно-простой путь, так как путь начинается и заканчивается в одной и той же вершине. | |proof = В данном случае мы не сможем найти вершинно-простой путь, так как путь начинается и заканчивается в одной и той же вершине. | ||
}} | }} | ||
+ | |||
== Замечания == | == Замечания == | ||
* Так как вершинно-простой путь всегда является рёберно-простым, данная теорема справедлива и для рёберно-простого пути. | * Так как вершинно-простой путь всегда является рёберно-простым, данная теорема справедлива и для рёберно-простого пути. |
Версия 21:48, 20 октября 2016
Содержание
Теорема о существовании простого пути в случае существования пути
Теорема: | ||
Доказательство: | ||
Конструктивное доказательствоРассмотрим путь: между вершинами и , причём . Возьмем — вершина на данном пути. Если она лежит на данном пути более одного раза, то она принадлежит какому-то (не обязательно простому) циклу . Удалим этот цикл. Получившаяся последовательность вершин и рёбер графа останется путём , но не будет содержать найденный цикл. Начнём процесс с вершины и будем повторять его каждый раз для следующей вершины нового пути, пока не дойдём до последней. По построению, получившийся путь будет содержать каждую из вершин графа не более одного раза, а значит, будет вершинно-простым.Неконструктивное доказательствоВыберем из всех путей между данными вершинами путь наименьшей длины.
| ||
Утверждение: |
Данная теорема не верна для случая . |
В данном случае мы не сможем найти вершинно-простой путь, так как путь начинается и заканчивается в одной и той же вершине. |
Замечания
- Так как вершинно-простой путь всегда является рёберно-простым, данная теорема справедлива и для рёберно-простого пути.
- Теорема может быть сформулирована как для ориентированного, так и для неориентированного графа.