Иммунные и простые множества — различия между версиями
Строка 24: | Строка 24: | ||
Докажем несколько лемм, из которых будет очевидна правильность утверждения теоремы. | Докажем несколько лемм, из которых будет очевидна правильность утверждения теоремы. | ||
+ | |||
+ | Необходимо, чтобы перечислимое множество <tex>E(q)</tex> имело иммунное дополнение. Это означает, что <tex>E(q)</tex> должно пересекаться с любым бесконечным перечислимым множеством. | ||
Строка 29: | Строка 31: | ||
|statement=Для любого бесконечного перечислимого множества <tex>B</tex> существует его элемент, принадлежащий <tex>E(q)</tex>. | |statement=Для любого бесконечного перечислимого множества <tex>B</tex> существует его элемент, принадлежащий <tex>E(q)</tex>. | ||
|proof= | |proof= | ||
− | + | По построению, для любого множества <tex> B </tex> в <tex>E(q)</tex> будет содержаться первый его элемент не меньший <tex>2 i</tex>, где <tex>i</tex> {{---}} номер перечислителя множества <tex>B</tex>. | |
}} | }} | ||
− | |||
− | |||
{{Лемма | {{Лемма | ||
|statement=Для любого бесконечного перечислимого множества <tex>B</tex> верно, что <tex>B \not \subset \overline{E(q)}</tex>. | |statement=Для любого бесконечного перечислимого множества <tex>B</tex> верно, что <tex>B \not \subset \overline{E(q)}</tex>. | ||
|proof= | |proof= | ||
− | + | По первой лемме существует элемент <tex>B</tex>, принадлежащий <tex>E(q)</tex>, и, следовательно, не принадлежащий <tex>\overline{E(q)}</tex>. | |
}} | }} | ||
− | |||
− | |||
{{Лемма | {{Лемма |
Версия 21:37, 27 октября 2016
Определение: |
Множество натуральных чисел | называется иммунным (англ. immune set ), если оно бесконечно и не содержит бесконечных перечислимых подмножеств.
Определение: |
Множество натуральных чисел | называется простым (англ. simple set ), если — перечислимое, бесконечное и дополнение — иммунное.
Теорема: | ||||||||||||||||||
Существует простое множество. | ||||||||||||||||||
Доказательство: | ||||||||||||||||||
Рассмотрим все программы. Для некоторого перечислимого языка какая-то из них является его перечислителем. Рассмотрим программу : главной нумерации программу на шагов напечатать первый , который вывела эта программа, такой что: for for запустить -ую в
Докажем несколько лемм, из которых будет очевидна правильность утверждения теоремы. Необходимо, чтобы перечислимое множество имело иммунное дополнение. Это означает, что должно пересекаться с любым бесконечным перечислимым множеством.
Вернемся к доказательству теоремы. Получаем: — иммунно. — простое. | ||||||||||||||||||
Простые множества являются примерами перечислимых множеств, не являющихся m-полными. Именно так и возникло понятие простого множества: Пост (англ. Post ) искал пример перечислимого неразрешимого множества, которое не было бы m-полным.
Литература
- Н. К. Верещагин, А. Шень. Лекции по математической логике и теории алгоритмов. Часть 3. Вычислимые функции. — М.: МЦНМО, 1999. С. 134. ISBN 5-900916-36-7
- Роджерс Х. Теория рекурсивных функций и эффективная вычислимость. — М.:Мир, 1972. С. 141-143.
- Wikipedia — Simple set