Остовные деревья: определения, лемма о безопасном ребре — различия между версиями
Строка 1: | Строка 1: | ||
==Минимальное остовное дерево== | ==Минимальное остовное дерево== | ||
− | Дан связный неориентированный граф <tex> G = (V, E) </tex>, где <tex>\ V </tex> - множество вершин, <tex>\ E </tex> - множество ребер. Для каждого ребра <tex>\ (u, v) \in E </tex> задана весовая функция <tex>\ w(u, v) </tex>, которая определяет стоимость перехода из <tex>\ u </tex> в <tex>\ v </tex>. | + | Дан связный неориентированный [[Основные определения теории графов|граф]] <tex> G = (V, E) </tex>, где <tex>\ V </tex> - множество [[Основные определения теории графов|вершин]], <tex>\ E </tex> - множество [[Основные определения теории графов|ребер]]. Для каждого ребра <tex>\ (u, v) \in E </tex> задана весовая функция <tex>\ w(u, v) </tex>, которая определяет стоимость перехода из <tex>\ u </tex> в <tex>\ v </tex>. |
{{Определение | {{Определение | ||
|definition = | |definition = |
Версия 04:55, 8 декабря 2010
Содержание
Минимальное остовное дерево
Дан связный неориентированный граф , где - множество вершин, - множество ребер. Для каждого ребра задана весовая функция , которая определяет стоимость перехода из в .
Определение: |
Минимальным остовным деревом(как вариант MST) графа Граф может содержать несколько минимальных остовных деревьев. | называется ациклическое подмножество , которое соединяется все вершины и чей общий вес минимален.
Безопасное ребро
Пусть
- подмножество некоторого минимального остовного дерева графа .Определение: |
Ребро | называется безопасным, если при добавлении его в , остается подмножеством некоторого минимального остовного дерева графа .
Разрез
Определение: |
Разрезом неориентированного графа | называется разбиение на два подмножества: и . Обозначается как .
Пересечение разреза
Определение: |
Мы говорим, что ребро | пересекает разрез , если один из его концов оказывается в множестве , а другой в множестве .
Согласованность разреза
Определение: |
Мы говорим, что разрез согласован с множеством | по ребрам, если ни одно ребро из не пересекает разрез.
Легкое ребро
Определение: |
Ребро, пересекающее разрез, является легким, если оно имеет минимальный вес среди всех ребер, пересекающих разрез. |
Заметим, что может быть несколько легких ребер одновременно.
Лемма о безопасном ребре
Теорема: |
Пусть - связный неориентированный граф с действительной весовой функцией , определенной на . Пусть - подмножество , которое входит в некоторое минимальное остовное дерево графа ; - разрез , согласованный с по ребрам, а - легкое ребро, пересекающее разрез . Тогда ребро является безопасным для . |
Доказательство: |
Пусть |
Литература
- Кормен Т., Лейзерсон Ч., Ривест Р., Штайн К. - Алгоритмы. Построение и анализ.