Отношение порядка — различия между версиями
Kamensky (обсуждение | вклад) |
(→Определения: исправил опечатку) |
||
Строка 14: | Строка 14: | ||
[[Бинарное отношение]] <tex>R</tex> на множестве <tex>X</tex> называется '''строгим отношением частичного порядка''' (англ. ''strict order relation''), если оно обладает следующими свойствами: | [[Бинарное отношение]] <tex>R</tex> на множестве <tex>X</tex> называется '''строгим отношением частичного порядка''' (англ. ''strict order relation''), если оно обладает следующими свойствами: | ||
* [[Рефлексивное отношение|Антирефлексивность]]: <tex>\forall a \in X: aRa </tex> — не выполняется. | * [[Рефлексивное отношение|Антирефлексивность]]: <tex>\forall a \in X: aRa </tex> — не выполняется. | ||
− | * [[Симметричное отношение|Антисимметричность]]: <tex>\forall a, b \in X:</tex> если <tex>aRb</tex> и <tex> | + | * [[Симметричное отношение|Антисимметричность]]: <tex>\forall a, b \in X:</tex> если <tex>aRb</tex> и <tex>bRa</tex>, то <tex> a = b </tex>. |
* [[Транзитивное отношение|Транзитивность]]: <tex>\forall a, b, c \in X:</tex> если <tex>aRb</tex> и <tex>bRc</tex>, то <tex>aRc</tex>. | * [[Транзитивное отношение|Транзитивность]]: <tex>\forall a, b, c \in X:</tex> если <tex>aRb</tex> и <tex>bRc</tex>, то <tex>aRc</tex>. | ||
}} | }} | ||
Строка 33: | Строка 33: | ||
Отношение строгого порядка обозначают символом <tex><</tex>. Запись вида <tex>a < b</tex> читают как «<tex>a</tex> меньше <tex>b</tex>». | Отношение строгого порядка обозначают символом <tex><</tex>. Запись вида <tex>a < b</tex> читают как «<tex>a</tex> меньше <tex>b</tex>». | ||
− | + | ||
== Примеры == | == Примеры == | ||
* На множестве вещественных чисел отношения «больше» и «меньше» являются отношениями строгого порядка, а «больше или равно» и «меньше или равно» — нестрогого, причем линейного порядка, но не полного. | * На множестве вещественных чисел отношения «больше» и «меньше» являются отношениями строгого порядка, а «больше или равно» и «меньше или равно» — нестрогого, причем линейного порядка, но не полного. |
Версия 23:15, 17 ноября 2016
Определения
Определение: |
Бинарное отношение на множестве называется отношением частичного порядка (англ. order relation), если оно обладает следующими свойствами:
|
Множество
, на котором введено отношение частичного порядка, называется частично упорядоченным.Отношение частичного порядка также называют нестрогим порядком (англ. non-strict order).
Определение: |
Бинарное отношение на множестве называется строгим отношением частичного порядка (англ. strict order relation), если оно обладает следующими свойствами:
|
Определение: |
Бинарное отношение на множестве называется отношением линейного порядка, если оно является отношением частичного порядка и обладает следующим свойством: либо , либо . |
Множество
, на котором введено отношение линейного порядка, называется линейно упорядоченным (англ. total order).Определение: |
Бинарное отношение на множестве называется отношением полного порядка, если оно является отношением линейного порядка и обладает следующим свойством: . |
Множество
, на котором введено отношение полного порядка, называется полностью упорядоченным (англ. well-order).Отношение нестрогого порядка обозначают символом
. Запись вида читают как « меньше либо равно ».Отношение строгого порядка обозначают символом
. Запись вида читают как « меньше ».Примеры
- На множестве вещественных чисел отношения «больше» и «меньше» являются отношениями строгого порядка, а «больше или равно» и «меньше или равно» — нестрогого, причем линейного порядка, но не полного.
- Отношение «являться делителем» на множестве целых чисел является отношением частичного порядка.
- Отношение «меньше или равно» является отношением полного порядка на множестве натуральных чисел.