Изменения

Перейти к: навигация, поиск

Триангуляция Делоне на сфере

388 байт добавлено, 08:02, 22 ноября 2016
м
Локальный критерий Делоне
Из треугольника в ребра: если для каждого треугольника выполнен критерий, то для каждого ребра можно рассматривать плоскость при любом треугольнике при ребре.
Обратно: Рассмотрим треугольник <tex>ABC</tex>, для каждого из ребра можно провести плоскость и они образуют трехмерный угол, снаружи которого нет точек. В пересечении угла и плосокости <tex>ABC</tex> образуется тетраэдр. Если в нем есть точки, то точки есть внутри треугольника, тогда это не триангуляция => точек в тетраэдре нет => плоскостью <tex>ABC</tex> можно отделить пространство с точками => выполняется глобальный критерий.
}}
Будем называть '''хорошими''' те рёбра, для которых выполняется локальный критерий Делоне.
{{Лемма
|about=3
|id=fliplemmasphere
|statement=
Из двух рёбер, которые можно провести для пары треугольников, как минимум одно хорошее.
|proof=
}}
264
правки

Навигация