Перечислимые языки — различия между версиями
AMaltsev (обсуждение | вклад) м |
AMaltsev (обсуждение | вклад) м |
||
Строка 107: | Строка 107: | ||
Язык нечётных неотрицательных чисел коперечислим. | Язык нечётных неотрицательных чисел коперечислим. | ||
|proof= | |proof= | ||
− | <tex>\overline L</tex> - язык чётных неотрицательных чисел. Так как язык чётных неотрицательных чисел перечислим, то и язык нечётных неотрицательных чисел тоже перечислим. | + | <tex>\overline L</tex> {{---}} язык чётных неотрицательных чисел. Так как язык чётных неотрицательных чисел перечислим, то и язык нечётных неотрицательных чисел тоже перечислим. |
}} | }} | ||
Строка 115: | Строка 115: | ||
Язык простых чисел коперечислим. | Язык простых чисел коперечислим. | ||
|proof= | |proof= | ||
− | Пусть <tex>L</tex> - язык простых чисел, тогда <tex>\overline L</tex> - язык, состоящий из составных чисел и единицы. Покажем, что <tex>\overline L</tex> полуразрешим, а, следовательно, и перечислим согласно теореме, приведённой выше. | + | Пусть <tex>L</tex> - язык простых чисел, тогда <tex>\overline L</tex> {{---}} язык, состоящий из составных чисел и единицы. Покажем, что <tex>\overline L</tex> полуразрешим, а, следовательно, и перечислим согласно теореме, приведённой выше. |
Построим простой полуразрешитель: | Построим простой полуразрешитель: | ||
Строка 146: | Строка 146: | ||
[[Категория: Теория формальных языков]] | [[Категория: Теория формальных языков]] | ||
[[Категория: Теория вычислимости]] | [[Категория: Теория вычислимости]] | ||
+ | [[Категория: Разрешимые и перечислимые языки]] |
Версия 21:11, 23 ноября 2016
Содержание
Основные определения
Определение: |
Полуразрешимый язык (англ. semi-decidable language) — язык, для которого существует программа
| такая, что
Определение: |
Перечислимый язык (англ. recursively enumerable language) — язык, для которого существует программа | такая, что . Язык называется коперечислимым (англ. co-enumerable), если — перечислимый. Класс всех перечислимых языков называется , а всех коперечислимих - .
Определение: |
Пусть имеется некоторая программа | , которая может либо завершиться за конечное время и что-то вернуть, либо зависнуть. Запуск программы с тайм-лимитом (англ. time limit) будем обозначать как и иметь в виду следующее: если за операций программа корректно завершилась и что-то вернула, то вернёт то же самое; если же за операций программа не успела завершиться, то вернёт (символ зависания).
Теорема: |
— перечислимый — полуразрешимый. |
Доказательство: |
:
function p(x: int): int
for i = 1 to
if g(i) == x
return 1
:
function(i: int): int cnt = 0 for k = 1 to for x if (x) == 1 cnt++ if cnt == i return x
function(i: int): int for j = 1 to x = (j) if x U cnt++ if cnt == i return x U.insert(x) |
Теорема: |
Любой разрешимый язык является перечислимым. |
Доказательство: |
Любой разрешимый язык | является полуразрешимым. Так как любой полуразрешимый язык является перечислимым, то является перечислимым.
Теорема: |
— перечислим и коперечислим — |
Доказательство: |
Рассмотрим полуразрешители для | и и одновременно запустим их для одного и того же элемента . принадлежит либо , либо , поэтому один из полуразрешителей успешно отработает и не зависнет. Значит, мы за конечное время узнаем, лежит ли в или нет. Таким образом, мы построили разрешитель для , то есть — разрешимый.
Примеры перечислимых языков
Утверждение: |
Язык натуральных чисел перечислим. |
Приведём программу, перечисляющую язык натуральных чисел:
function p(i: int): int return i |
Утверждение: |
Язык чётных неотрицательных чисел перечислим. |
Приведём программу, перечисляющую язык чётных неотрицательных чисел:
function p(i: int): int return i * 2 |
Примеры коперечислимых языков
Утверждение: |
Язык нечётных неотрицательных чисел коперечислим. |
— язык чётных неотрицательных чисел. Так как язык чётных неотрицательных чисел перечислим, то и язык нечётных неотрицательных чисел тоже перечислим. |
Утверждение: |
Язык простых чисел коперечислим. |
Пусть - язык простых чисел, тогда — язык, состоящий из составных чисел и единицы. Покажем, что полуразрешим, а, следовательно, и перечислим согласно теореме, приведённой выше.Построим простой полуразрешитель:
function p(n: int): int
for i = 2 to
if n mod i == 0
return 0
return 1
|
Примеры неперечислимых языков
Утверждение: |
Язык пар неперечислим. |
Функция busy beaver — невычислима, следовательно такой язык неперечислим. |
Источники информации
- Н. К. Верещагин, А. Шень. Лекции по математической логике и теории алгоритмов. Часть 3. Вычислимые функции. — М.: МЦНМО, 1999. С. 134. ISBN 5-900916-36-7
- Wikipedia — Recursively enumerable language
- Википедия — Рекурсивно перечислимый язык