Свойства перечислимых языков. Теорема Успенского-Райса — различия между версиями
AMaltsev (обсуждение | вклад) м (переменные в тех) |
AMaltsev (обсуждение | вклад) (Отмена правки 56248 участника AMaltsev (обсуждение)) |
||
Строка 42: | Строка 42: | ||
Пусть <tex>p_\infty</tex> {{---}} всегда зацикливающийся алгоритм. Для упрощения предположим, что <tex>p_\infty \in A</tex>. В противном случае доказательство аналогично. | Пусть <tex>p_\infty</tex> {{---}} всегда зацикливающийся алгоритм. Для упрощения предположим, что <tex>p_\infty \in A</tex>. В противном случае доказательство аналогично. | ||
− | Рассмотрим <tex>p_a</tex> {{---}} программу, такую что <tex>a \in \overline A</tex> (такое <tex>a</tex> существует, т.к. | + | Рассмотрим <tex>p_a</tex> {{---}} программу, такую что <tex>a \in \overline A</tex> (такое <tex>a</tex> существует, т.к. А {{---}} нетривиально). Рассмотрим также произвольное перечислимое неразрешимое множество <tex>X</tex>. Пусть <tex>p_X(n)</tex> {{---}} полуразрешитель <tex>X</tex>. |
Зафиксируем произвольное <tex>n \in \mathbb{N}</tex> и построим следующую функцию | Зафиксируем произвольное <tex>n \in \mathbb{N}</tex> и построим следующую функцию | ||
<tex>Vn(x) = \begin{cases} | <tex>Vn(x) = \begin{cases} | ||
− | p_a(x), n \in X \\ | + | p_a(x), n \in X; \\ |
− | p_\infty(x), n \notin X \\ | + | p_\infty(x), n \notin X; \\ |
\end{cases} </tex> | \end{cases} </tex> | ||
Версия 14:58, 24 ноября 2016
Содержание
Свойства языков
Рассмотрим множество всех перечислимых языков .
Определение: |
Свойством языков (англ. property of languages) называется множество | .
Определение: |
Свойство называется тривиальным (англ. trivial), если | или .
Определение: |
Язык свойства (англ. language of property) | — множество программ, языки которых обладают этим свойством: .
Определение: |
Свойство разрешимым. | называется разрешимым (англ. recursive), если является
Примеры
Примеры свойств:
- Язык должен содержать слово hello.
- Язык должен содержать хотя бы одно простое число.
Псевдокод для разрешителя
, где// — полуразрешитель некоторого языка return true
Псевдокод для программы в общем случае, то есть для проверки того, что язык удовлетворяет свойству :
return
Псевдокод полуразрешителя для языка свойства из первого примера:
теореме Райса-Шапиро) return ('hello')// — перечислимый язык в общем случае, поэтому — полуразрешитель (по
Теорема Успенского-Райса
Теорема: |
Язык никакого нетривиального свойства не является разрешимым. |
Доказательство: |
Приведём доказательство от противного. Предположим, что разрешимо.Пусть — всегда зацикливающийся алгоритм. Для упрощения предположим, что . В противном случае доказательство аналогично.Рассмотрим — программу, такую что (такое существует, т.к. А — нетривиально). Рассмотрим также произвольное перечислимое неразрешимое множество . Пусть — полуразрешитель .Зафиксируем произвольное и построим следующую функцию
function(x): if (n) == 1 return (x) while true
Получили, что если Так как , то , а если , то . Таким образом, . — разрешимо, то можно проверить для любого , лежит ли оно в . Но это тоже самое, что и проверка . Тогда можно для каждого проверить, лежит ли оно в , а следовательно и построить разрешитель для . Так как — неразрешимо, получили противоречие. |
См. также
Источники информации
- Wikipedia — Rice's theorem
- Rice, H. G. — Classes of Recursively Enumerable Sets and Their Decision Problems." — Trans. Amer. Math. Soc. 74, 358-366, 1953.
- Хопкрофт Д., Мотванн Р., Ульманн Д. —Введение в теорию автоматов, языков и вычислений — стр. 397.