Действие перестановки на набор из элементов, представление в виде циклов — различия между версиями
Tsarevfs (обсуждение | вклад) |
|||
Строка 1: | Строка 1: | ||
− | + | Перестановка — это отображение <math>\pi:X\rightarrow X</math>, которое каждому <math>x_i \in X</math> ставит во взаимно-однозначное соответствие <math>x_j \in X</math>. Индексы <math>i,j \in \mathcal{f}1, 2, \ldots, n\mathcal{g}</math>, где <math>n = \mathcal{j}X\mathcal{j}</math>. | |
− | |||
− | Индексы <math>i,j \in \mathcal{f}1, 2, \ldots, n\mathcal{g}</math>, где <math>n = \mathcal{j}X\mathcal{j}</math>. | ||
Число <math>~n</math> называют порядком перестановки. Перестановку можно записать в виде упорядоченного набора из чисел <math>1, 2,\ldots, n</math>. | Число <math>~n</math> называют порядком перестановки. Перестановку можно записать в виде упорядоченного набора из чисел <math>1, 2,\ldots, n</math>. | ||
− | Элемент | + | Элемент набора <math>~a_k</math> означает, что <math>~\pi (x_{a_k}) = x_k </math>. Таким образом, если <math> <x_1,x_{2},\ldots,x_{n}></math> — упорядоченный набор элементов из множества<math>~X</math>, то <math>\pi (<x_{1},x_{2},\ldots,x_{n}>) = <x_{q_1},x_{q_2},\ldots,x_{q_n}> </math>, где <math>q_{a_i} = i</math>. Например, применив перестановку <math>~<3,2,4,1>)</math> к набору элементов <math>~(x_1,x_2,x_3,x_4)</math>, получим набор <math>~<x_4,x_2,x_1,x_3></math>. |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− |
Версия 00:43, 10 декабря 2010
Перестановка — это отображение
, которое каждому ставит во взаимно-однозначное соответствие . Индексы , где . Число называют порядком перестановки. Перестановку можно записать в виде упорядоченного набора из чисел . Элемент набора означает, что . Таким образом, если — упорядоченный набор элементов из множества , то , где . Например, применив перестановку к набору элементов , получим набор .