Изменения

Перейти к: навигация, поиск

Примитивно рекурсивные функции

1 байт убрано, 19:12, 4 декабря 2016
Рекурсивные функции
<tex>\mathbb{N} \rightarrow \mathbb{N}</tex>, <tex>\mathrm{N}(x) = x'</tex>, где <tex>x' = x + 1</tex>.
<li> <tex>\mathrm{U^n_i}</tex> {{---}} проекция(<tex>i</tex>-ый аргумент среди <tex>n</tex>).</li>
<tex>\mathrm{U^n_i}: \mathbb{N}^{n} \rightarrow \mathbb{N}</tex>, <tex>\mathrm{U^n_i} (x_1, ... x_n) = x_i</tex>
Если <tex>\mathrm{f}: \mathbb{N}^{n} \rightarrow \mathbb{N}</tex> и <tex>\mathrm{g}:\mathbb{N}^{n+2} \rightarrow \mathbb{N}</tex>, то <tex>\mathrm{R}\langle{}\mathrm{f},\mathrm{g}\rangle: \mathbb{N}^{n+1} \rightarrow \mathbb{N}</tex>, при этом <tex>\mathrm{R}\langle{}\mathrm{f},\mathrm{g}\rangle (x_1,...x_n,y) = \left\{\begin{array}{ll}
\mathrm{f}(x_1,...x_n) & , y = 0\\ \mathrm{g}(x_1,...x_n,y-1,\mathrm{R}\langle{}\mathrm{f},\mathrm{g}\rangle(x_1,...x_n,y-1)) &, y > 0
\end{array}\right.</tex>
{{Определение
|definition=
Если некоторая функция <tex>\mathbb{N}^{n} \rightarrow \mathbb{N}</tex> может быть задана с помощью данных примитивов(англ. ''primitive''), то она называется '''рекурсивной'''(англ. ''recursive'').
}}
313
правок

Навигация