Группы графов — различия между версиями
Ashkroft (обсуждение | вклад) |
Ashkroft (обсуждение | вклад) |
||
Строка 1: | Строка 1: | ||
{{Определение | {{Определение | ||
|definition= | |definition= | ||
− | Непустое множество А вместе с заданной на нем бинарной операцией, результат применения которой к элементам <tex>\alpha_1</tex> и <tex>\alpha_2</tex> из <tex>A</tex> обозначается через <tex>\alpha_1\alpha_2</tex> , образует '''группу''', если выполняются следующие четыре аксиомы: | + | Непустое множество А вместе с заданной на нем бинарной операцией, результат применения которой к элементам <tex>\alpha_1</tex> и <tex>\alpha_2</tex> из <tex>A</tex> обозначается через <tex>\alpha_1\alpha_2</tex> , образует '''группу''' (англ. ''group''), если выполняются следующие четыре аксиомы: |
# Аксиома замыкания. <tex>\forall \alpha_1, \alpha_2 \in A </tex>, элемент <tex>\alpha_1\alpha_2 \in A </tex>. | # Аксиома замыкания. <tex>\forall \alpha_1, \alpha_2 \in A </tex>, элемент <tex>\alpha_1\alpha_2 \in A </tex>. | ||
# Аксиома ассоциативности. <tex>\forall \alpha_1, \alpha_2, \alpha_3 \in A </tex>, справедливо равенство <tex>\alpha_1(\alpha_2\alpha_3) = (\alpha_1\alpha_2)\alpha_3</tex> | # Аксиома ассоциативности. <tex>\forall \alpha_1, \alpha_2, \alpha_3 \in A </tex>, справедливо равенство <tex>\alpha_1(\alpha_2\alpha_3) = (\alpha_1\alpha_2)\alpha_3</tex> | ||
Строка 10: | Строка 10: | ||
{{Определение | {{Определение | ||
|definition= | |definition= | ||
− | '''Подстановка''' {{---}} взаимно однозначное отображение конечного множества на себя. | + | '''Подстановка''' (англ. ''Permutation'') {{---}} взаимно однозначное отображение конечного множества на себя. |
}} | }} | ||
{{Определение | {{Определение | ||
|definition= | |definition= | ||
− | Если некоторая совокупность подстановок замкнута относительно композиции отображений, определяющей бинарную операцию для подстановок на одном и том же множестве, то аксиомы 2, 3 и 4 автоматически выполняются и эта совокупность называется '''группой подстановок'''. | + | Если некоторая совокупность подстановок замкнута относительно композиции отображений, определяющей бинарную операцию для подстановок на одном и том же множестве, то аксиомы 2, 3 и 4 автоматически выполняются и эта совокупность называется '''группой подстановок''' (англ. ''permutation group''). |
}} | }} | ||
{{Определение | {{Определение | ||
|definition= | |definition= | ||
− | '''Автоморфизмом''' графа <tex>G</tex> называется изоморфизм графа <tex>G</tex> на себя | + | '''Автоморфизмом''' (англ. ''Automorphism'') графа <tex>G</tex> называется изоморфизм графа <tex>G</tex> на себя |
}} | }} | ||
{{Определение | {{Определение | ||
|definition= | |definition= | ||
− | Каждый автоморфизм <tex>\alpha</tex> графа <tex>G</tex> есть подстановка множества вершин <tex>V</tex>, сохраняющая смежность. Конечно, подстановка <tex>\alpha</tex> переводит любую вершину графа в вершину той же степени. Очевидно, что последовательное выполнение двух автоморфизмов есть также автоморфизм; поэтому автоморфизмы графа <tex> G </tex> образуют группу подстановок <tex> \Gamma (G) </tex>, действующую на множестве вершин <tex>V(G)</tex>. Эту группу называют '''группой''' или иногда '''вершинной группой графа''' <tex>G</tex>. | + | Каждый автоморфизм <tex>\alpha</tex> графа <tex>G</tex> есть подстановка множества вершин <tex>V</tex>, сохраняющая смежность. Конечно, подстановка <tex>\alpha</tex> переводит любую вершину графа в вершину той же степени. Очевидно, что последовательное выполнение двух автоморфизмов есть также автоморфизм; поэтому автоморфизмы графа <tex> G </tex> образуют группу подстановок <tex> \Gamma (G) </tex>, действующую на множестве вершин <tex>V(G)</tex>. Эту группу называют '''группой''' или иногда '''вершинной группой графа''' <tex>G</tex> (англ. ''point-group''). |
}} | }} | ||
{{Определение | {{Определение | ||
|definition= | |definition= | ||
− | Вершинная группа графа <tex>G</tex> индуцирует другую группу подстановок <tex> \Gamma_1 (G) </tex>, называемую '''реберной группой графа''' <tex>G</tex>; она действует на множестве ребер <tex>E(G)</tex>. | + | Вершинная группа графа <tex>G</tex> индуцирует другую группу подстановок <tex> \Gamma_1 (G) </tex>, называемую '''реберной группой графа''' <tex>G</tex>; она действует на множестве ребер <tex>E(G)</tex> (англ. ''line-group''). |
}} | }} | ||
Строка 60: | Строка 60: | ||
''Случай 2.'' Вершины <tex>u</tex> и <tex>v</tex> не смежны. Пусть <tex>x</tex> — произвольное ребро, инцидентное вершине <tex>u</tex>. Тогда <tex>\alpha'(x) \not= x</tex>, следовательно, <tex>\alpha'\not=i</tex>. | ''Случай 2.'' Вершины <tex>u</tex> и <tex>v</tex> не смежны. Пусть <tex>x</tex> — произвольное ребро, инцидентное вершине <tex>u</tex>. Тогда <tex>\alpha'(x) \not= x</tex>, следовательно, <tex>\alpha'\not=i</tex>. | ||
}} | }} | ||
+ | |||
+ | ==Операции на группах подстановок== | ||
+ | '''Сумма подстановок''' <tex>A + B</tex> {{---}} это группа подстановок, действующая на объединении <tex>X \cup Y</tex> непересекающихся множеств <tex>X</tex> и <tex>Y</tex> элементы которой записываются в виде <tex>\alpha + \beta</tex> и представляют собой упорядоченные пары подстановок <tex>\alpha</tex> из <tex>A</tex> и <tex>\beta</tex> из <tex>B</tex>. Каждый элемент <tex>z</tex>, принадлежащий множеству <tex>X \cup Y</tex> преобразуется подстановкой <tex>\alpha + \beta</tex> по правилу | ||
+ | |||
+ | <tex> | ||
+ | (\alpha + \beta)(z) = | ||
+ | \begin{cases} | ||
+ | \alpha z, z \in X, \\ | ||
+ | \beta z, z \in Y. | ||
+ | \end{cases} | ||
+ | </tex> | ||
+ | |||
+ | '''Произведение групп''' <tex>A \times B </tex> {{---}} это группа подстановок, действующая на множестве <tex>X\times Y</tex>, элементы которой записываются в виде <tex>\alpha\times\beta</tex> и представляют собой упорядоченные пары подстановок <tex>\alpha</tex> из <tex>A</tex> и <tex>\beta</tex> из <tex>B</tex>. Элемент <tex>(x,y)</tex> множества <tex>X\times Y</tex> преобразуется подстановкой <tex>\alpha\times\beta</tex> естественным образом: | ||
+ | |||
+ | <tex>(\alpha\times\beta)(x,y)=(\alpha x,\beta y)</tex> | ||
+ | |||
+ | '''Композиция групп''' <tex>A[B]</tex> группы <tex>A</tex> относительно группы <tex>B</tex> также действует на множестве <tex>X\times Y</tex>. Для любой подстановки <tex>\alpha</tex> из <tex>A</tex> и любой последовательности <tex>(\beta_1,\beta_2,\ldots,\beta_d)</tex>, содержащей <tex>d</tex> (не обязательно различных) подстановок из <tex>B</tex>, существует единственная подстановка из <tex>A[B]</tex>, которая записывается в виде <tex>(\alpha;\beta_1,\beta_2,\ldots,\beta_d)</tex>, такая, что для всякой пары <tex>(x_i , y_i)</tex> из <tex>X\times Y</tex> выполняется равенство | ||
+ | |||
+ | <tex>(\alpha;\beta_1,\beta_2,\ldots,\beta_d)(x_i , y_j) = (\alpha x_i,\beta_i y_j).</tex> | ||
+ | |||
+ | '''Степенная группа''' (обозначается <tex>B^A</tex>) действует на множестве <tex>Y^X</tex> всех функций, отображающих <tex>X</tex> в <tex>Y</tex>. Будем всегда предполагать, что степенная группа действует на множестве, состоящем более чем из одной функции. Для каждой пары подстановок <tex>\alpha</tex> из <tex>A</tex> и <tex>\beta</tex> из <tex>B</tex> существует единственная подстановка из <tex>B^A</tex> (записывается <tex>\beta^\alpha</tex>), которая действует на любую функцию <tex>f</tex> из <tex>Y^X</tex> в соответствии со следующим соотношением, определяющим образ каждого элемента <tex>x\in X</tex> при отображении <tex>\beta^\alpha f</tex>: | ||
+ | |||
+ | <tex>(\beta^\alpha f)(x)=\beta f(\alpha x).</tex> | ||
==См. также== | ==См. также== |
Версия 21:41, 6 декабря 2016
Определение: |
Непустое множество А вместе с заданной на нем бинарной операцией, результат применения которой к элементам
| и из обозначается через , образует группу (англ. group), если выполняются следующие четыре аксиомы:
Определение: |
Подстановка (англ. Permutation) — взаимно однозначное отображение конечного множества на себя. |
Определение: |
Если некоторая совокупность подстановок замкнута относительно композиции отображений, определяющей бинарную операцию для подстановок на одном и том же множестве, то аксиомы 2, 3 и 4 автоматически выполняются и эта совокупность называется группой подстановок (англ. permutation group). |
Определение: |
Автоморфизмом (англ. Automorphism) графа | называется изоморфизм графа на себя
Определение: |
Каждый автоморфизм | графа есть подстановка множества вершин , сохраняющая смежность. Конечно, подстановка переводит любую вершину графа в вершину той же степени. Очевидно, что последовательное выполнение двух автоморфизмов есть также автоморфизм; поэтому автоморфизмы графа образуют группу подстановок , действующую на множестве вершин . Эту группу называют группой или иногда вершинной группой графа (англ. point-group).
Определение: |
Вершинная группа графа | индуцирует другую группу подстановок , называемую реберной группой графа ; она действует на множестве ребер (англ. line-group).
Для иллюстрации различия групп
и рассмотрим граф , показанный на рисунке; его вершины помечены а ребра . Вершинная группа состоит из четырех подстановокТождественная подстановка вершинной группы индуцирует тождественную подстановку на множестве ребер, в то время как подстановка
индуцирует подстановку на множестве ребер, в которой ребро остается на месте, меняется с , а с . Таким образом, реберная группа состоит из следующих подстановок, индуцируемых указанными выше элементами вершинной группы:Понятно, что реберная и вершинная группы графа
изоморфны. Но они, конечно, не могут быть идентичными, так как степень группы равна 5, а степень группы равна 4.Теорема: |
Реберная и вершинная группы графа изоморфны тогда и только тогда, когда граф имеет не более одной изолированной вершины, а граф не является его компонентой. |
Доказательство: |
Пусть подстановка группы индуцируется подстановкой группы . Из определения операции умножения в группе вытекает, чтодля . Поэтому отображение является групповым гомоморфизмом группы на . Следовательно, тогда и только тогда, когда ядро этого отображения тривиально.Для доказательства необходимости предположим, что . Тогда из неравенства ( — тождественная подстановка) следует, что . Если в графе существуют две различные изолированные вершины и , то можно определить подстановку , положив для . Тогда , но . Если — компонента графа , то, записав ребро графа в виде и определив подстановку точно так же, как выше, получим , но .Чтобы доказать достаточность, предположим, что граф имеет не больше одной изолированной вершины и не является его компонентой. Если группа тривиальна, то очевидно, что группа оставляет на месте каждое ребро и, следовательно, — тривиальная группа. Поэтому предположим, что существует подстановка , для которой . Тогда степени вершин и равны. Поскольку вершины и не изолированы, их степени не равны нулю. Здесь возникает два случая.Случай 1. Вершины Случай 2. Вершины и смежны. Пусть . Так как не является компонентой графа , то степени обеих вершин и больше единицы. Следовательно, существует такое ребро инцидентное вершине , что ребро инцидентно вершине . Отсюда , и тогда . и не смежны. Пусть — произвольное ребро, инцидентное вершине . Тогда , следовательно, . |
Операции на группах подстановок
Сумма подстановок
— это группа подстановок, действующая на объединении непересекающихся множеств и элементы которой записываются в виде и представляют собой упорядоченные пары подстановок из и из . Каждый элемент , принадлежащий множеству преобразуется подстановкой по правилу
Произведение групп
— это группа подстановок, действующая на множестве , элементы которой записываются в виде и представляют собой упорядоченные пары подстановок из и из . Элемент множества преобразуется подстановкой естественным образом:
Композиция групп
группы относительно группы также действует на множестве . Для любой подстановки из и любой последовательности , содержащей (не обязательно различных) подстановок из , существует единственная подстановка из , которая записывается в виде , такая, что для всякой пары из выполняется равенство
Степенная группа (обозначается
) действует на множестве всех функций, отображающих в . Будем всегда предполагать, что степенная группа действует на множестве, состоящем более чем из одной функции. Для каждой пары подстановок из и из существует единственная подстановка из (записывается ), которая действует на любую функцию из в соответствии со следующим соотношением, определяющим образ каждого элемента при отображении :
См. также
Источники информации
- Харари Ф. Теория графов. М.: Мир, 1973. (Изд. 3, М.: КомКнига, 2006. — 296 с.)