Действие перестановки на набор из элементов, представление в виде циклов — различия между версиями
Tsarevfs (обсуждение | вклад) |
Tsarevfs (обсуждение | вклад) |
||
Строка 9: | Строка 9: | ||
==Циклы== | ==Циклы== | ||
Циклом длины <math>~l</math> называется такая подстановка <math>~\pi,</math> которая тождественна на всём множестве <math>X,</math> кроме подмножества <math>\{x_1,x_2,\dots,x_l\}\subset X</math> и <math>~\pi(x_l)=x_1,</math> <math>~\pi(x_i)=x_{i+1}.</math> Обозначается <math>(x_1,x_2,\dots,x_l).</math> Перестановку также можно записать в виде произведения непересекающихся циклов, причём единственным образом с точностью до порядка следования циклов в произведении. Например: | Циклом длины <math>~l</math> называется такая подстановка <math>~\pi,</math> которая тождественна на всём множестве <math>X,</math> кроме подмножества <math>\{x_1,x_2,\dots,x_l\}\subset X</math> и <math>~\pi(x_l)=x_1,</math> <math>~\pi(x_i)=x_{i+1}.</math> Обозначается <math>(x_1,x_2,\dots,x_l).</math> Перестановку также можно записать в виде произведения непересекающихся циклов, причём единственным образом с точностью до порядка следования циклов в произведении. Например: | ||
− | : <math>~(1, 5, 2)(3, 6)(4)=<5,1,6,4,2,3> </math>. Перестановку можно представить в виде графа. Граф содержит ребро от вершины <math>~x_i</math> к вершине <math>~x_j</math> если <math>~\pi(x_j) = x_i</math> | + | : <math>~(1, 5, 2)(3, 6)(4)=<5,1,6,4,2,3> </math>. Перестановку можно представить в виде графа. Граф содержит ребро от вершины <math>~x_i</math> к вершине <math>~x_j</math> если <math>~\pi(x_j) = x_i</math>, то есть элемент <math>~x_i</math> переходит в <math>~x_j</math> после применения перестановки <math>~\pi</math>. Тогда циклы перестановки соответствуют циклическим путям в графе. |
[[Файл:Циклы_мал.png]] | [[Файл:Циклы_мал.png]] |
Версия 11:20, 10 декабря 2010
Перестановка — это отображение
, которое каждому ставит во взаимно-однозначное соответствиеИндексы
, где . Число называют порядком перестановки. Перестановку можно записать в виде упорядоченного набора из чисел . Элемент такого набора означает, что . Таким образом, если — упорядоченный набор элементов из множества , то , где . Например, применив перестановку к набору элементов , получим набор . <br\>Произведение перестановок
Произведением перестановок
и называется композиция (т.е. последовательное применение) этих перестановок: . Легко показать, что произведение перестановок тоже является перестановкой, причем если , то .Циклы
Циклом длины
называется такая подстановка которая тождественна на всём множестве кроме подмножества и Обозначается Перестановку также можно записать в виде произведения непересекающихся циклов, причём единственным образом с точностью до порядка следования циклов в произведении. Например:- . Перестановку можно представить в виде графа. Граф содержит ребро от вершины к вершине если , то есть элемент переходит в после применения перестановки . Тогда циклы перестановки соответствуют циклическим путям в графе.