Действие перестановки на набор из элементов, представление в виде циклов — различия между версиями
Tsarevfs (обсуждение | вклад) |
Tsarevfs (обсуждение | вклад) |
||
Строка 1: | Строка 1: | ||
− | '''Перестановка''' — это отображение < | + | '''Перестановка''' — это отображение <tex>\pi:X\rightarrow X</tex>, которое каждому <tex>x_i \in X</tex> ставит во взаимно-однозначное соответствие <tex>x_j \in X</tex> |
− | Индексы < | + | Индексы <tex>i,j \in \mathcal{f}1, 2, \ldots, n\mathcal{g}</tex>, где <tex>n = \mathcal{j}X\mathcal{j}</tex>. |
− | Число < | + | Число <tex>~n</tex> называют порядком перестановки. Перестановку можно записать в виде упорядоченного набора из чисел <tex>1, 2,\ldots, n</tex>. |
− | Элемент такого набора < | + | Элемент такого набора <tex>~\mathcal{h}a_1,a_2,\ldots,a_n\mathcal{i}~ a_k</tex> означает, что <tex>~\pi (x_{a_k}) = x_k </tex>. Таким образом, если <tex> \Theta = \mathcal{h}x_1,x_{2},\ldots,x_{n}\mathcal{i}</tex> — упорядоченный набор элементов из множества<tex>~X</tex>, то <tex>\pi (\Theta) = \mathcal{h}x_{q_1},x_{q_2},\ldots,x_{q_n}\mathcal{i} </tex>, где <tex>q_{a_i} = i</tex>. Например, применив перестановку <tex>~\mathcal{h}3,2,4,1\mathcal{i}</tex> к набору элементов <tex>~(x_1,x_2,x_3,x_4)</tex>, получим набор <tex>~\mathcal{h}x_4,x_2,x_1,x_3\mathcal{i}</tex>. <br\> |
==Произведение перестановок== | ==Произведение перестановок== | ||
− | Произведением перестановок < | + | Произведением перестановок <tex>~\pi</tex> и <tex>~\sigma</tex> называется композиция (т.е. последовательное применение) этих перестановок: <tex>(\pi*\sigma)(\Theta) = \pi(\sigma(\Theta)) = \pi \circ \sigma (\Theta)</tex>. |
− | Легко показать, что произведение перестановок тоже является перестановкой, причем если < | + | Легко показать, что произведение перестановок тоже является перестановкой, причем если <tex>~\phi = \pi*\sigma</tex>, то <tex>\phi(x_i) = \pi \circ \sigma (x_i)</tex>. |
==Циклы== | ==Циклы== | ||
− | Циклом длины < | + | Циклом длины <tex>~l</tex> называется такая перестановка <tex>~\pi,</tex> которая тождественна на всём множестве <tex>X,</tex> кроме подмножества <tex>\{x_1,x_2,\dots,x_l\}\subset X</tex> и <tex>~\pi(x_l)=x_1,</tex> <tex>~\pi(x_i)=x_{i+1}.</tex> Обозначается <tex>(x_1,x_2,\dots,x_l).</tex> Перестановку также можно записать в виде произведения непересекающихся циклов, причём единственным образом с точностью до порядка следования циклов в произведении. Например: <tex>~(1, 5, 2)(3, 6)(4)=\mathcal{h}5,1,6,4,2,3\mathcal{i} </tex>. |
− | Перестановку можно представить в виде графа. Граф содержит ребро от вершины < | + | Перестановку можно представить в виде графа. Граф содержит ребро от вершины <tex>~x_i</tex> к вершине <tex>~x_j</tex> если <tex>~\pi(x_j) = x_i</tex>, то есть элемент <tex>~x_i</tex> переходит в <tex>~x_j</tex> после применения перестановки <tex>~\pi</tex>. Тогда циклы перестановки соответствуют циклическим путям в графе. |
[[Файл:Циклы_мал.png]] | [[Файл:Циклы_мал.png]] |
Версия 17:02, 10 декабря 2010
Перестановка — это отображение
, которое каждому ставит во взаимно-однозначное соответствиеИндексы
, где . Число называют порядком перестановки. Перестановку можно записать в виде упорядоченного набора из чисел . Элемент такого набора означает, что . Таким образом, если — упорядоченный набор элементов из множества , то , где . Например, применив перестановку к набору элементов , получим набор . <br\>Произведение перестановок
Произведением перестановок
и называется композиция (т.е. последовательное применение) этих перестановок: . Легко показать, что произведение перестановок тоже является перестановкой, причем если , то .Циклы
Циклом длины
называется такая перестановка которая тождественна на всём множестве кроме подмножества и Обозначается Перестановку также можно записать в виде произведения непересекающихся циклов, причём единственным образом с точностью до порядка следования циклов в произведении. Например: .Перестановку можно представить в виде графа. Граф содержит ребро от вершины
к вершине если , то есть элемент переходит в после применения перестановки . Тогда циклы перестановки соответствуют циклическим путям в графе.