Паросочетания: основные определения, теорема о максимальном паросочетании и дополняющих цепях — различия между версиями
(Новая страница: «== Паросочетание в двудольном графе== {{Определение |definition= Произвольное множество ребер дв…») |
|||
Строка 23: | Строка 23: | ||
В доказательстве используются несколько новых понятий: | В доказательстве используются несколько новых понятий: | ||
{{Определение | {{Определение | ||
− | |definition= Увеличивающая цепь - }} | + | |definition= Увеличивающая цепь - чередующаяся цепь, у которой оба конца свободны.}} |
{{Определение | {{Определение | ||
− | |definition= Уменьшающая цепь - }} | + | |definition= Уменьшающая цепь - чередующаяся цепь, у которой оба конца покрыты.}} |
{{Определение | {{Определение | ||
− | |definition= Сбалансированная цепь - }} | + | |definition= Сбалансированная цепь - чередующаяся цепь, у которой один конец свободен, а другой покрыт}} |
− | Рассмотрим паросочетание <tex>M</tex> в графе <tex>G</tex> и предположим, что <tex>M</tex> - не наибольшее. Докажем, что тогда имеется | + | |
+ | Рассмотрим паросочетание <tex>M</tex> в графе <tex>G</tex> и предположим, что <tex>M</tex> - не наибольшее. Докажем, что тогда имеется увеличивающая цепь относительно <tex>M</tex>. Пусть <tex>M'</tex> - другое паросочетание и <tex>|M'|>|M|</tex>. Рассмотрим подграф <tex>H</tex> графа <tex>G</tex>, образованный теми ребрами, которые входят в одно и только в одно из паросочетаний <tex>M</tex>, <tex>M'</tex>. Иначе говоря, множеством ребер графа <tex>H</tex> является симметрическая разность <tex>M\otimes M'</tex>. В графе <tex>H</tex> каждая вершина инцидентна не более чем двум ребрам (одному из <tex>M</tex> и одному из <tex>M'</tex> ), т.е. имеет степень не более двух. В таком графе каждая компонента связности - путь или цикл. В каждом из этих путей и циклов чередуются ребра из <tex>M</tex> и <tex>M'</tex>. Так как <tex>|M'|>|M|</tex>, имеется компонента, в которой ребер из <tex>M'</tex> содержится больше, чем ребер из <tex>M</tex>. Это может быть только путь, у которого оба концевых ребра принадлежат <tex>M'</tex>. Заметим, что относительно <tex>M</tex> этот путь является увеличивающей цепью. | ||
}} | }} |
Версия 21:59, 11 декабря 2010
Паросочетание в двудольном графе
Определение: |
Произвольное множество ребер двудольного графа, такое что никакие два ребра не имеют общей вершины. Обозначается как | .
Определение: |
Вершины, принадлежащие | , называются покрытыми, не принадлежащие - свободными.
Определение: |
Чередующаяся цепь - путь составленный из ребер двудольного графа, в котором для любых двух соседних ребер выполняется, что одно из них принадлежит паросочетанию | , а другое нет.
Определение: |
Дополняющая цепь - чередующаяся цепь, у которой оба конца свободны. |
Теорема (О максимальном паросочетании и дополняющих цепях): | ||||||
Паросочетание в двудольном графе является максимальным тогда и только тогда, когда в нет дополняющей цепи. | ||||||
Доказательство: | ||||||
Пусть в двудольном графе с максимальным паросочетанием существует дополняющая цепь. Тогда пройдя по ней и заменив вдоль нее все ребра, входящие в паросочетание, на невходящие и наоборот, мы получим большее паросочетание. То есть не являлось максимальным. Противоречие.
В доказательстве используются несколько новых понятий:
| ||||||