Теорема о рекурсии — различия между версиями
(→Теорема о рекурсии) |
(→Теорема о рекурсии) |
||
Строка 8: | Строка 8: | ||
|proof= | |proof= | ||
Приведем конструктивное доказательство теоремы. | Приведем конструктивное доказательство теоремы. | ||
− | Пусть есть вычислимая <tex>V(x,y)</tex>. Будем поэтапно строить функцию <tex>p(y)</tex>. <br> Предположим, что у нас в распоряжении есть функция <tex>getSrc()</tex>, которая вернет код <tex>p(y)</tex>. Тогда саму <tex>p(y)</tex> можно переписать так: | + | Пусть есть вычислимая <tex>V(x,y)</tex>. Будем поэтапно строить функцию <tex>p(y)</tex>. <br> Предположим, что у нас в распоряжении есть функция <tex>\mathrm{getSrc()}</tex>, которая вернет код <tex>p(y)</tex>. Тогда саму <tex>p(y)</tex> можно переписать так: |
<code><font size = "3em"> | <code><font size = "3em"> | ||
Строка 21: | Строка 21: | ||
} | } | ||
</font></code> | </font></code> | ||
− | Теперь нужно определить функцию <tex>getSrc()</tex>. Предположим, что внутри <tex>p(y)</tex> мы можем определить функцию <tex>getOtherSrc()</tex>, состоящую из одного оператора <tex>return</tex>, которая вернет весь предшествующий ей код. Тогда <tex>p(y)</tex> перепишется так. | + | Теперь нужно определить функцию <tex>\mathrm{getSrc()}</tex>. Предположим, что внутри <tex>p(y)</tex> мы можем определить функцию <tex>\mathrm{getOtherSrc()}</tex>, состоящую из одного оператора <tex>return</tex>, которая вернет весь предшествующий ей код. Тогда <tex>p(y)</tex> перепишется так. |
<code><font size = "3em"> | <code><font size = "3em"> | ||
p(y){ | p(y){ | ||
Строка 39: | Строка 39: | ||
</font></code> | </font></code> | ||
− | Теперь <tex>getOtherSrc()</tex> определяется очевидным образом, и мы получаем '''итоговую версию''' функции <tex>p(y)</tex> | + | Теперь <tex>\mathrm{getOtherSrc()}</tex> определяется очевидным образом, и мы получаем '''итоговую версию''' функции <tex>p(y)</tex> |
<code><font size = "3em"> | <code><font size = "3em"> | ||
p(y){ | p(y){ |
Версия 21:01, 14 декабря 2016
Теорема о рекурсии
Теорема (Клини, о рекурсии / Kleene's recursion theorem): |
Пусть вычислимая функция. Тогда найдётся такая вычислимая , что . — |
Доказательство: |
Приведем конструктивное доказательство теоремы.
Пусть есть вычислимая
p(y){ V(x,y) {...} main() { return V(getSrc(), y) } string getSrc() {...} }
Теперь нужно определить функцию p(y){ V(x,y) {...} main() { return V(getSrc(), y) } string getSrc() { string src = getOtherSrc(); return src + "string getOtherSrc() {" + "\n" + "return" + src + "\n" + "}"; } string getOtherSrc() {...} }
Теперь p(y){ V(x,y) {...} main() { return V(getSrc(), y) } string getSrc() { string src = getOtherSrc(); return src + "string getOtherSrc() {" + "\n" + "return" + src + "\n" + "}"; } string getOtherSrc() { return " p(y){ // Возвращаем весь предыдущий код V(x,y) {...} main() { return V(getSrc(), y) } string getSrc() { string src = getOtherSrc(); return src + "string getOtherSrc() {" + "\n" + "return" + src + "\n" + "}"; }"; } } |
Если говорить неформально, теорема о рекурсии утверждает, что внутри программы можно использовать ее код. Это упрощает доказательство некоторых теорем.
Приведем так же альтернативую формулировку теоремы и альтернативное (неконструктивное) доказательство.
Теорема о неподвижной точке
Теорема (Роджерс, о неподвижной точке / Rogers' fixed-point theorem): | ||||||
Пусть универсальная функция для класса вычислимых функций одного аргумента, — всюду определённая вычислимая функция одного аргумента. Тогда найдется такое , что , то есть и - номера одной функции. — | ||||||
Доказательство: | ||||||
Введем на множестве натуральных чисел следующее отношение: и докажем вспомогательную лемму.
Будем доказывать теорему от противного: предположим, что существует всюду определенная вычислимая функция , такая, что для любого . В терминах введенного нами отношения, это значит, что не имеет — неподвижных точек.Рассмотрим некоторую вычислимую функцию, от которой никакая вычислимая функция не может отличаться всюду. Такой будет, например Согласно доказанной нами лемме, существует вычислимая и всюду определенная функция (действительно, если предположить, что существует вычислимая функция , всюду отличная от , то нарушается определение универсальной функции.) , являющаяся — продолжением функции . Давайте зададим функцию следующим образом: , где - искомая всюду определенная, вычислимая функция, не имеющая — неподвижных точек. Тогда всюду отличается от (в силу того, что не имеет неподвижных точек.) Получили противоречие, из чего следует, что такой функции не существует. | ||||||
Пример использования
Используя теорему о рекурсии, приведём простое доказательство неразрешимости языка
.Лемма: |
Язык неразрешим. |
Доказательство: |
Предположим обратное, тогда существует программа p(x) if r(p) return 1 while true Пусть . Тогда условие выполняется и . Противоречие. Если , то не выполняется и . Противоречие. |
Доказательство теоремы Успенского-Райса с использованием теоремы о рекурсии:
Теорема: |
Язык никакого нетривиального свойства не является разрешимым. |
Доказательство: |
Пусть Q(x,y) if d(x) return g(y) else return f(y) По теореме о рекурсии, .Если , то .Если же В обоих случаях получаем противоречие. , то . |
Источники
- Wikipedia — Kleene's recursion theorem
- Верещагин Н. К., Шень А. Лекции по математической логике и теории алгоритмов. Часть 3. Вычислимые функции — М.: МЦНМО, 1999 - С. 176
- Kleene, Stephen On notation for ordinal numbers - The Journal of Symbolic Logic, 1938 - С. 150-155