Выпуклые функции — различия между версиями
Komarov (обсуждение | вклад) (→Определения) |
Rybak (обсуждение | вклад) м (+ссылка) |
||
Строка 20: | Строка 20: | ||
{{Определение | {{Определение | ||
|definition= | |definition= | ||
− | Пусть <tex>f(x)</tex> задана на <tex>[a; b]</tex>. Тогда она выпукла вверх на этом отрезке, если | + | Пусть [[Отображения|функция]] <tex>f(x)</tex> задана на <tex>[a; b]</tex>. Тогда она выпукла вверх на этом отрезке, если |
<tex>\forall x_1, x_2 \in [a; b] \forall \alpha \in [0; 1] \quad \alpha f(x_1) + (1 - \alpha) f(x_2) \leq f(\alpha x_1 + (1 - \alpha)x_2)</tex>. | <tex>\forall x_1, x_2 \in [a; b] \forall \alpha \in [0; 1] \quad \alpha f(x_1) + (1 - \alpha) f(x_2) \leq f(\alpha x_1 + (1 - \alpha)x_2)</tex>. | ||
Если же всё время неравенство противоположно, то функция называется выпуклой вниз. | Если же всё время неравенство противоположно, то функция называется выпуклой вниз. |
Версия 11:43, 12 декабря 2010
Определения
Будем рассматривать отрезок
, набор чисел и коэффициенты такие, что .
Определение: |
Выпуклая комбинация чисел | — это
Частный случай — . В этом случае — среднее арифметическое.
Обозначим за
, а . Тогда , а так как и .В этом смысле отрезок — выпуклое множество, так как он содержит выпуклую комбинацию любых своих чисел.
(типа определение) Выпуклое множество вместе с парой своих точек содержит отрезок, их соединяющий.
Определение: |
Пусть функция задана на . Тогда она выпукла вверх на этом отрезке, если
Если же всё время неравенство противоположно, то функция называется выпуклой вниз. . |
В силу того, что было сказано о выпуклой комбинации, определение корректно: .
Геометрической смысл этого факта состоит в том, что для выпуклой вверх функции её график будет лежать выше хорды.
Замечание: если
выпукла вниз, то выпукла вверх.Неравенство Йенсена
Теорема (Неравенство Йенсена): |
Пусть выпукла вверх на . Тогда и их выпуклой комбинации выполнено неравенство
. |
Доказательство: |
Докажем по индукции. База: . Неравенство превращается в определение выпуклой вверх функции, для которой это, очевидно, выполняется.Переход. Пусть это верно для . Докажем, что это верно для :, обозначим за Пусть . Тогда получаем: .Значит, шаг индукции проделан, неравенство доказано для произвольного (по предположению индукции) (так как ) . |
Связь выпуклости и дифференцируемости
Применим линейную интерполяцию (в случае
узлов) чтобы выяснить связь между выпуклостью и дифференцируемостью функции . Будем считать, что дифференцируема столько раз, сколько нам нужно. Имея узла на и , , составим :— прямая, проходящая через точки и . Значит, между и получаем хорду, соединяющую две точки графика.
В вопросе о выпуклости надо проверять знак такой разности:
, .Если
на то правая часть будет неотрицательная, так как , поэтому , и т. к. и произвольны, то выпукла вверх.Итак,
— выпукла вверх.Пусть
выпукла вверх. Будем считать, что — непрерывна. .Пусть
, , где — малое положительное число. Рассмотрим полином Лагранжа для системы узлов :
Итак, если
выпукла вверх, то .Пример
В качестве примера рассмотрим следующем параграфе.
, выпукла вверх. Это мы применим в