Связь максимального паросочетания и минимального вершинного покрытия в двудольных графах — различия между версиями
(→Теорема о мощности минимального вершинного покрытия и максимального паросочетания) |
(→Теорема о мощности минимального вершинного покрытия и максимального паросочетания) |
||
| Строка 28: | Строка 28: | ||
Очевидно, что ребер из <tex>L^+</tex> в <tex>R^-</tex> и из <tex>R^+</tex> в <tex>L^-</tex> быть не может. | Очевидно, что ребер из <tex>L^+</tex> в <tex>R^-</tex> и из <tex>R^+</tex> в <tex>L^-</tex> быть не может. | ||
| − | Ребер | + | Ребер из <tex>R^-</tex> в <tex>L^+</tex> быть не может, т.к. если такое ребро <tex>uv</tex> существует, то оно — ребро паросочетания. Тогда вершина <tex>v</tex> насыщена паросочетанием. Но т.к. <tex>v \in L^+</tex>, то в нее можно дойти из какой-то ненасыщенной вершины левой доли. Значит, существует ребро <tex>wv, w \in R^+</tex>. Но тогда <tex>v</tex> инцидентны два ребра из паросочетания. Противоречие. |
Заметим, что минимальным вершинным покрытием <tex>G</tex> является либо <tex>L</tex>, либо <tex>R</tex>, либо <tex>L^- \cup R^+</tex>. | Заметим, что минимальным вершинным покрытием <tex>G</tex> является либо <tex>L</tex>, либо <tex>R</tex>, либо <tex>L^- \cup R^+</tex>. | ||
Версия 17:21, 23 декабря 2016
Содержание
Минимальное вершинное покрытие
| Определение: |
| Вершинным покрытием (англ. vertex covering) графа называется такое подмножество множества вершин графа , что любое ребро этого графа инцидентно хотя бы одной вершине из множества . |
| Определение: |
| Минимальным вершинным покрытием (англ. minimum vertex covering) графа называется вершинное покрытие, состоящее из наименьшего числа вершин. |
Теорема о мощности минимального вершинного покрытия и максимального паросочетания
| Определение: |
| Максимальным паросочетанием (англ. maximum matching) в двудольном графе называется паросочетание максимальной мощности. |
| Теорема (Кёниг): |
В произвольном двудольном графе мощность максимального паросочетания равна мощности минимального вершинного покрытия. |
| Доказательство: |
|
Пусть в построено максимальное паросочетание. Ориентируем ребра паросочетания, чтобы они шли из правой доли в левую, ребра не из паросочетания — так, чтобы они шли из левой доли в правую. Запустим обход в глубину из всех не насыщенных паросочетанием вершин левой доли. Разобьем вершины каждой доли графа на два множества: те, которые были посещены в процессе обхода, и те, которые не были посещены в процессе обхода. Тогда , , где — правая и левая доли соответственно, — вершины правой и левой доли, посещенные обходом, — не посещенные обходом вершины. Тогда в могут быть следующие ребра:
Очевидно, что ребер из в и из в быть не может. Ребер из в быть не может, т.к. если такое ребро существует, то оно — ребро паросочетания. Тогда вершина насыщена паросочетанием. Но т.к. , то в нее можно дойти из какой-то ненасыщенной вершины левой доли. Значит, существует ребро . Но тогда инцидентны два ребра из паросочетания. Противоречие. Заметим, что минимальным вершинным покрытием является либо , либо , либо . В не насыщенных паросочетанием вершин быть не может, т.к. иначе в существует дополняющая цепь, что противоречит максимальности построенного паросочетания. В свободных вершин быть не может, т.к. все они должны находиться в . Тогда т.к. ребер из паросочетания между и нет, то каждому ребру максимальным паросочетания инцидентна ровно одна вершина из . Тогда равна мощности максимального паросочетания. Множество вершин является минимальным вершинным покрытием. Значит мощность максимального паросочетания равна мощности минимального вершинного покрытия. |
Алгоритм построения минимального вершинного покрытия
Из доказательства предыдущей теоремы следует алгоритм поиска минимального вершинного покрытия графа:
- Построить максимальное паросочетание.
- Ориентировать ребра:
- Из паросочетания — из правой доли в левую.
- Не из паросочетания — из левой доли в правую.
- Запустить обход в глубину из всех свободных вершин левой доли, построить множества .
- В качестве результата взять .
См. также
- Теорема о максимальном паросочетании и дополняющих цепях.
- Связь вершинного покрытия и независимого множества.
