Матричное представление перестановок — различия между версиями
Sketcher (обсуждение | вклад) |
Sketcher (обсуждение | вклад) |
||
Строка 59: | Строка 59: | ||
Так как перестановки являются группой, то для любой перестановки существует обратная. Так как любая перестановка имеет свою матрицу перестановки, то утверждение о существовании обратной матрицы перестановки также справедливо. | Так как перестановки являются группой, то для любой перестановки существует обратная. Так как любая перестановка имеет свою матрицу перестановки, то утверждение о существовании обратной матрицы перестановки также справедливо. | ||
}} | }} | ||
+ | |||
{{Утверждение|statement=Для любой матрицы перестановок <tex>P</tex> справедливо: | {{Утверждение|statement=Для любой матрицы перестановок <tex>P</tex> справедливо: | ||
<center><tex>P^T P = P P^T = E</tex></center> где <tex>E</tex> — единичная матрица. | <center><tex>P^T P = P P^T = E</tex></center> где <tex>E</tex> — единичная матрица. | ||
Строка 66: | Строка 67: | ||
Теперь в обратную сторону <tex>{(P^T P)}_{ij} = \sum\limits_{k = 1}^{n}{(P^T)}_{ik} {(P)}_{kj} = \sum\limits_{k=1}^{n} {(P)}_{ki} {(P)}_{kj} = {\delta}_{ij} = {E} </tex> | Теперь в обратную сторону <tex>{(P^T P)}_{ij} = \sum\limits_{k = 1}^{n}{(P^T)}_{ik} {(P)}_{kj} = \sum\limits_{k=1}^{n} {(P)}_{ki} {(P)}_{kj} = {\delta}_{ij} = {E} </tex> | ||
где <tex> {\delta}_{ij} </tex> — символ Кронекера. }} | где <tex> {\delta}_{ij} </tex> — символ Кронекера. }} | ||
+ | |||
+ | {{Утверждение|statement=Произведение матриц перестановок есть матрица перестановок. | ||
+ | |proof= | ||
+ | Каждой матрице перестановок соответствует своя перестановка. Так как произведение перестановок также дает перестановку, значит и произведение матриц перестановок есть такая же матрица.}} | ||
{{Утверждение|statement= | {{Утверждение|statement= | ||
− | При умножение слева | + | При умножение слева матрицы перестановок <tex> {P}_{ij} </tex> на матрицу <tex>A</tex> происходит перестановка <tex> {i} </tex> - й и <tex> {j} </tex> - й строк матрицы <tex>A</tex>. |
− | Умножение справа | + | Умножение справа матрицы перестановок <tex> {P}_{ij} </tex> на матрицу <tex>A</tex> приводит к перестановке <tex> {i} </tex> - го и <tex> {j} </tex> - го столбцов матрицы <tex>A</tex>. |
|proof= | |proof= | ||
Рассмотрим сначала умножение слева, т.е. матрицу <tex> {P}_{ij}{A} </tex>, которую обозначим <tex> {B} = {b}_{kl} </tex>. Посчитаем чему равны элементы этой матрицы: | Рассмотрим сначала умножение слева, т.е. матрицу <tex> {P}_{ij}{A} </tex>, которую обозначим <tex> {B} = {b}_{kl} </tex>. Посчитаем чему равны элементы этой матрицы: | ||
Строка 86: | Строка 91: | ||
\end {cases} </tex> | \end {cases} </tex> | ||
− | Действительно, по определению | + | Действительно, по определению матрицы перестановок единица в строке стоит на <tex> {k} </tex> - м месте, если , <tex> {k \ne i,j} </tex>, на <tex> {j} </tex> - м месте, если <tex> {k = i} </tex>, и на <tex> {i} </tex> - м месте, если <tex> {k = j} </tex>. Итак, если <tex> {k \ne i,j} </tex>, то <tex> {k} </tex> - я строка матрицы <tex>B</tex> просто совпадает с <tex> {k} </tex> - й строкой |
− | матрицы A. Далее, <tex> {i} </tex> - я строка матрицы B совпадает с <tex> {j} </tex> - й строкой матрицы A, и | + | матрицы <tex>A</tex>. Далее, <tex> {i} </tex> - я строка матрицы <tex>B</tex> совпадает с <tex> {j} </tex> - й строкой матрицы <tex>A</tex>, и |
− | наоборот. Поэтому B получается из A перестановкой <tex> {i} </tex> - й и <tex> {j} </tex> - й строк. | + | наоборот. Поэтому <tex>B</tex> получается из <tex>A</tex> перестановкой <tex> {i} </tex> - й и <tex> {j} </tex> - й строк. |
Теперь рассмотрим умножение справа. Пусть <tex> {B} = {A}{P}_{ij} </tex>. | Теперь рассмотрим умножение справа. Пусть <tex> {B} = {A}{P}_{ij} </tex>. | ||
Строка 108: | Строка 113: | ||
\end {cases} </tex> | \end {cases} </tex> | ||
− | По определению | + | По определению матрицы перестановок единица в столбце стоит на <tex> {l} </tex> - м месте, если <tex> {l \ne i,j} </tex>, на <tex> {j} </tex> - м месте, |
если <tex> {l = i} </tex>, и на <tex> {i} </tex> - м месте, если <tex> {l = j} </tex>. | если <tex> {l = i} </tex>, и на <tex> {i} </tex> - м месте, если <tex> {l = j} </tex>. | ||
− | Итак, если <tex> {l \ne i,j} </tex>, то <tex> {l} </tex> - й столбец матрицы | + | Итак, если <tex> {l \ne i,j} </tex>, то <tex> {l} </tex> - й столбец матрицы <tex>B</tex> просто совпадает с <tex> {l} </tex> - м столбцом |
− | + | матрицы <tex>A</tex>. Далее, <tex> {i} </tex> - й столбец матрицы <tex>B</tex> совпадает с <tex> {j} </tex> - м столбцом матрицы <tex>A</tex>, и | |
− | + | наоборот. Поэтому <tex>B</tex> получается из <tex>A</tex> перестановкой <tex> {i} </tex> - го и <tex> {j} </tex> - го столбцов. | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
}} | }} | ||
Строка 181: | Строка 174: | ||
*[http://portal.tpu.ru/SHARED/k/KONVAL/Sites/Russian_sites/1/23.htm Матрица перестановки] | *[http://portal.tpu.ru/SHARED/k/KONVAL/Sites/Russian_sites/1/23.htm Матрица перестановки] | ||
*[https://en.wikipedia.org/wiki/Permutation_matrix Permutation matrix] | *[https://en.wikipedia.org/wiki/Permutation_matrix Permutation matrix] | ||
− | * Brualdi, Richard A. (2006). Combinatorial matrix classes. Encyclopedia of Mathematics and Its Applications. Cambridge: Cambridge University Press. | + | * Brualdi, Richard A. (2006). Combinatorial matrix classes. Encyclopedia of Mathematics and Its Applications. Cambridge: Cambridge University Press. стр. 2, 19. |
[[Категория: Дискретная математика и алгоритмы]] | [[Категория: Дискретная математика и алгоритмы]] | ||
[[Категория: Комбинаторика]] | [[Категория: Комбинаторика]] |
Версия 00:44, 3 января 2017
Определение
Определение: |
Матрица перестановки (англ. Permutation matrix) — квадратная бинарная матрица, в каждой строке и в каждом столбце которой находится лишь одна единица. |
Определение: |
Если матрица перестановок | получена из единичной матрицы перестановкой местами двух строк (или двух столбцов), то такая матрица называется элементарной матрицей перестановок (англ. Elementary permutation matrix).
Каждая матрица перестановки размера является матричным представлением перестановки порядка .
Пусть дана перестановка
порядка :Соответствующей матрицей перестановки является матрица
вида:- , где — двоичный вектор длины , -й элемент которого равен единице, а остальные равны нулю.
Пример
Перестановка:
Соответствующая матрица:
Свойства
Утверждение: |
Для любых двух перестановок их матрицы обладают свойством:
|
Рассмотрим эта сумма может быть равна нулю или единице, причем единице в том случае, если в - той строчке на - том столбце матрицы и в - той строчке на - том столбце матрицы стоят единицы. значит, что в перестановке на - том месте стоит элемент , и означает что в перестановке на - том месте стоит элемент , а означает что в перестановке, которой соответствует эта матрица, так же на - том месте стоит элемент . Но также известно, что . В результате если , то . Аналогичные рассуждения можно провести когда , и также получим, что . Поэтому для любых справедливо , а раз такое равентсво выполняется, то . |
Утверждение: |
Для любой матрицы перестановок существует обратная:
|
Так как перестановки являются группой, то для любой перестановки существует обратная. Так как любая перестановка имеет свою матрицу перестановки, то утверждение о существовании обратной матрицы перестановки также справедливо. |
Утверждение: |
Для любой матрицы перестановок справедливо:
|
Рассмотрим Теперь в обратную сторону где — символ Кронекера. |
Утверждение: |
Произведение матриц перестановок есть матрица перестановок. |
Каждой матрице перестановок соответствует своя перестановка. Так как произведение перестановок также дает перестановку, значит и произведение матриц перестановок есть такая же матрица. |
Утверждение: |
При умножение слева матрицы перестановок на матрицу происходит перестановка - й и - й строк матрицы .
Умножение справа матрицы перестановок на матрицу приводит к перестановке - го и - го столбцов матрицы . |
Рассмотрим сначала умножение слева, т.е. матрицу , которую обозначим . Посчитаем чему равны элементы этой матрицы:
Действительно, по определению матрицы перестановок единица в строке стоит на - м месте, если , , на - м месте, если , и на - м месте, если . Итак, если , то - я строка матрицы просто совпадает с - й строкой матрицы . Далее, - я строка матрицы совпадает с - й строкой матрицы , и наоборот. Поэтому получается из перестановкой - й и - й строк.Теперь рассмотрим умножение справа. Пусть .
По определению матрицы перестановок единица в столбце стоит на наоборот. Поэтому - м месте, если , на - м месте, если , и на - м месте, если . Итак, если , то - й столбец матрицы просто совпадает с - м столбцом матрицы . Далее, - й столбец матрицы совпадает с - м столбцом матрицы , и получается из перестановкой - го и - го столбцов. |
Утверждение: |
Квадрат элементарной матрицы перестановок есть единичная матрица. |
Любая элементарная матрица перестановок является симметричной матрицей, следовательно . Отсюда следует, что , а . |
Утверждение: |
Матрица перестановок -го порядка может быть представлена в виде произведения элементарных матриц перестановок ( ). |
Обозначим - элементарную матрицу, полученную из единичной путем изменения - й и - й строк. Рассмотрим матрицу перестановокВозьмем и перестановками строк (домножением соответствующей элементарной матрицей слева) или столбцов (домножением соответствующей элементарной матрицей справа) перемещаем его на первое место. Так как в каждой строке или столбце только одна единица, то получим: и так далее, пока не получится единичной матрицы.В итоге: .Все элементарные матрицы обратимы и обратная к элементарной матрице — это тоже элементарная матрица, следовательно: Заметим, что с каждым шагом мы домнажаем на одну элементарную матрицу перестановок, следовательно всего будет . таких матриц. |
Применение
Благодаря своим свойствам, матрицам перестановок нашлось применение в линейной алгебре. Они используются в элементарных преобразованиях матриц, то есть домножение слева или справа на матрицу перестановок, есть перестановка любых строк или столбов соответственно.
Пример: пусть задана матрица перестановки
, которая соответствует перестановке , и матрица ,тогда перемножив получим:
- ,
видно, что вторая и третья строки поменялись местами;
- ,
видно, что второй и третий столбец поменялись местами.
См. также
Источники информации
- Матрица перестановки — Википедия
- Матрица перестановки
- Permutation matrix
- Brualdi, Richard A. (2006). Combinatorial matrix classes. Encyclopedia of Mathematics and Its Applications. Cambridge: Cambridge University Press. стр. 2, 19.