Алгоритм Эрли, доказательство оценки O(n^2) для однозначной грамматики — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
(Время работы для однозначной грамматики)
(Алгоритм)
Строка 4: Строка 4:
 
Будем рассматривать грамматику [[Удаление eps-правил из грамматики|без ε-правил]] и [[Удаление бесполезных символов из грамматики|бесполезных символов]].
 
Будем рассматривать грамматику [[Удаление eps-правил из грамматики|без ε-правил]] и [[Удаление бесполезных символов из грамматики|бесполезных символов]].
  
  <tex>I_0</tex> = <tex>\{[S' \rightarrow \cdot S, 0]\}</tex> # Правило (0) — инициализация
+
  '''function''' <tex>\mathtt{earley_mod}(G, w)</tex>:
useful_loop(0)
+
    <font color=green>// Инициализация </font>
+
    <tex> D_{0} = \lbrace [S' \rightarrow \cdot S, 0] \rbrace </tex>
for j = 1..n
+
    useful_loop(0)
    for <tex>[A \rightarrow \alpha \cdot a_{j} \beta, i] \in I_{j-1}</tex>
+
    '''for''' j = 1 .. n
        <tex>I_j</tex> &cup;= <tex>[A \rightarrow \alpha a_{j} \cdot \beta, i]</tex> # Правило (1)
+
        '''for''' <tex>[A \rightarrow \alpha \cdot a_{j} \beta, i] \in D_{j-1}</tex>
    useful_loop(j)
+
            <tex>D_j</tex> <tex> \cup</tex> = <tex>[A \rightarrow \alpha a_{j} \cdot \beta, i]</tex> <font color=green>// Первое правило </font>
 +
        useful_loop(j)  
  
  function useful_loop(j):
+
  '''function''' useful_loop(j):
     <tex>I_j'' = I_j</tex>
+
     <tex>D_j'' = D_j</tex>
     while <tex>I_j'' \ne \varnothing</tex>
+
     '''while''' <tex>D_j'' \ne \varnothing</tex>
         <tex>I_j' = I_j''</tex>
+
         <tex>D_j' = D_j''</tex>
         <tex>I_j'' = \varnothing</tex>
+
         <tex>D_j'' = \varnothing</tex>
         for <tex>[B \rightarrow \eta \cdot , i] \in I_j'</tex> # (*)
+
         '''for''' <tex>[B \rightarrow \eta \cdot , i] \in D_j'</tex>             <font color=green>// Цикл (*) </font>
             for <tex>[A \rightarrow \alpha \cdot B \beta, k] \in I_{i}</tex>
+
             '''for''' <tex>[A \rightarrow \alpha \cdot B \beta, k] \in D_{i}</tex>
                 <tex>I_j''</tex> &cup;= <tex>[A \rightarrow \alpha B \cdot \beta, k]</tex> # Правило (2)
+
                 <tex>D_j''</tex> <tex> \cup</tex> = <tex>[A \rightarrow \alpha B \cdot \beta, k] </tex> <font color=green>// Второе правило </font>
 
              
 
              
         for <tex>[B \rightarrow \alpha \cdot A \eta, k] \in I_j'</tex> # (**)
+
         '''for''' <tex>[B \rightarrow \alpha \cdot A \eta, k] \in D_j'</tex>       <font color=green>// Цикл (**) </font>
             for <tex>\beta : (A \rightarrow \beta) \in P</tex>
+
             '''for''' <tex>\beta : (A \rightarrow \beta) \in P</tex>
                 <tex>I_j''</tex> &cup;= <tex>[A \rightarrow \cdot \beta, j]</tex> # Правило (3)
+
                 <tex>D_j''</tex> <tex> \cup</tex> = <tex>[A \rightarrow \cdot \beta, j]</tex>     <font color=green>// Третье правило </font>
         <tex>I_j</tex> &cup;= <tex>I_j''</tex>
+
         <tex>D_j</tex> <tex> \cup</tex> = <tex>D_j''</tex>
  
 
== Доказательство эквивалентности ==
 
== Доказательство эквивалентности ==

Версия 23:32, 4 января 2017

Алгоритм

Для начала модифицируем алгоритм Эрли.

Будем рассматривать грамматику без ε-правил и бесполезных символов.

function [math]\mathtt{earley_mod}(G, w)[/math]:
   // Инициализация 
   [math] D_{0} = \lbrace [S' \rightarrow \cdot S, 0] \rbrace [/math]
   useful_loop(0)
   for j = 1 .. n
       for [math][A \rightarrow \alpha \cdot a_{j} \beta, i] \in D_{j-1}[/math]
           [math]D_j[/math] [math] \cup[/math] = [math][A \rightarrow \alpha a_{j} \cdot \beta, i][/math]  // Первое правило 
       useful_loop(j) 
function useful_loop(j):
    [math]D_j'' = D_j[/math]
    while [math]D_j'' \ne \varnothing[/math]
        [math]D_j' = D_j''[/math]
        [math]D_j'' = \varnothing[/math]
        for [math][B \rightarrow \eta \cdot , i] \in D_j'[/math]             // Цикл (*) 
            for [math][A \rightarrow \alpha \cdot B \beta, k] \in D_{i}[/math]
                [math]D_j''[/math] [math] \cup[/math] = [math][A \rightarrow \alpha B \cdot \beta, k]  [/math] // Второе правило 
            
        for [math][B \rightarrow \alpha \cdot A \eta, k] \in D_j'[/math]        // Цикл (**) 
            for [math]\beta : (A \rightarrow \beta) \in P[/math]
                [math]D_j''[/math] [math] \cup[/math] = [math][A \rightarrow \cdot \beta, j][/math]     // Третье правило 
        [math]D_j[/math] [math] \cup[/math] = [math]D_j''[/math]

Доказательство эквивалентности

В циклах, помеченных [math](*)[/math] и [math](**)[/math], просматривается не весь список [math]I_j[/math], а только те ситуации, которые были добавлены на предыдущей итерации цикла while. Данная модификация является корректной.

  1. Рассмотрим цикл [math](*)[/math]. Если в текущей ситуации [math][B \rightarrow \eta \cdot, i][/math] этого цикла [math]i \ne j[/math], то во внутреннем цикле просматривается список с меньшим индексом, в который новые ситуации больше не добавляются. Поэтому после первого просмотра этого списка будут добавлены все ситуации, удовлетворяющие условию, и больше ситуацию [math][B \rightarrow \eta \cdot, i][/math] в цикле [math](*)[/math] рассматривать не нужно. Если же [math]i = j[/math], то [math]\eta \Rightarrow^* \varepsilon[/math], что возможно, только если [math]B = S', \eta = \varepsilon[/math]. Тогда во внутреннем цикле не будет добавлено ни одной ситуации, так как [math]S'[/math] не встречается в правых частях правил.
  2. Теперь рассмотрим цикл [math](**)[/math]. Так как для каждой ситуации [math][B \rightarrow \alpha \cdot A \eta, k][/math] в список добавляется новая ситуация, соответствующая правилу из грамматики, а грамматика фиксирована, то после первого просмотра будут добавлены все возможные ситуации для [math][B \rightarrow \alpha \cdot A \eta, k][/math].

Таким образом, во все списки будут добавлены ситуации, которые были бы добавлены в ходе обычного алгоритма. Очевидно, что лишних ситуаций добавлено не будет, так как в циклах [math](*)[/math] и [math](**)[/math] просматривается подмножество полного списка. Значит этот алгоритм эквивалентен оригинальному.

Время работы для однозначной грамматики

Лемма (1):
[math]\forall\,j: 1 \le j \le n[/math] в списке [math]I_j[/math] находится [math]O(j)[/math] ситуаций.
Доказательство:
[math]\triangleright[/math]
Так как грамматика фиксирована, то [math]\forall i[/math] количество ситуаций вида [math][A \rightarrow \alpha \cdot \beta, i][/math] не больше некоторой константы. Таким образом, поскольку в [math]I_j[/math] находятся ситуации, у которых [math]0 \le i \le j[/math], всего в [math]I_j[/math] будет [math]O(j)[/math] ситуаций.
[math]\triangleleft[/math]


Лемма (2):
Пусть [math]\Gamma = (N, \Sigma, P, S)[/math] — однозначная КС-грамматика без непорождающих нетерминалов и [math]a_1 \dots a_n[/math] — цепочка из [math]\Sigma^*[/math]. Тогда алгоритм Эрли пытается включить [math][A \rightarrow \alpha \cdot \beta, i][/math] в [math]I_j[/math] не более одного раза, если [math]\alpha \ne \varepsilon[/math].
Доказательство:
[math]\triangleright[/math]

Ситуацию [math][A \rightarrow \alpha \cdot \beta, i][/math] можно включить в [math]I_j[/math] только по правилам [math](1)[/math] (если последний символ [math]\alpha[/math] — терминал) и [math](2)[/math] (если нетерминал). В первом случае результат очевиден. Во втором случае допустим, что [math][A \rightarrow \alpha'B \cdot \beta, i][/math] включается в [math]I_j[/math], когда рассматриваются две ситуации [math][B \rightarrow \eta_1 \cdot, k_1][/math] и [math][B \rightarrow \eta_2 \cdot, k_2][/math] (они различны, так как в цикле [math](*)[/math] каждая ситуация из каждого списка рассматривается по одному разу). Тогда ситуация [math][A \rightarrow \alpha' \cdot B\beta, i][/math] должна оказаться одновременно в [math]I_{k_1}[/math] и в [math]I_{k_2}[/math]. Таким образом, получаем:

  • [math]\alpha' \Rightarrow^* a_{i+1} \ldots a_{k_1}[/math] и [math]\alpha' \Rightarrow^* a_{i+1} \ldots a_{k_2}[/math];
  • [math]\eta_1 \Rightarrow^* a_{k_1+1} \ldots a_j[/math] и [math]\eta_2 \Rightarrow^* a_{k_2+1} \ldots a_j[/math].

Следовательно, [math]\alpha' \eta_1 \Rightarrow^* a_{i+1} \ldots a_j[/math] и [math]\alpha' \eta_2 \Rightarrow^* a_{i+1} \ldots a_j[/math].
Заметим, что [math]S \Rightarrow^* \gamma A \delta \Rightarrow^* a_1 \ldots a_i A \delta \Rightarrow a_1 \ldots a_i \alpha' B \beta \delta[/math]. Предположим, что [math]\beta \delta \Rightarrow^* w'[/math] (ведь в грамматике нет непорождающих нетерминалов). Тогда [math]S \Rightarrow^* a_1 \ldots a_i \alpha' \eta_1 w'[/math] и аналогично [math]S \Rightarrow^* a_1 \ldots a_i \alpha' \eta_2 w'[/math].

Таким образом, если [math]k_1 \ne k_2[/math], то подстрока [math]a_{i+1} \ldots a_j[/math] выводится двумя различными способами из [math]\alpha' \eta_1[/math] и [math]\alpha' \eta_2[/math] (поскольку в первом случае [math]\alpha' \Rightarrow^* a_{i+1} \ldots a_{k_1}[/math], а во втором [math]\alpha' \Rightarrow^* a_{i+1} \ldots a_{k_2}[/math]), то есть у строки [math]a_1 \ldots a_jw'[/math] есть два различных вывода, что противоречит однозначности грамматики. Если же [math]k_1 = k_2[/math], то [math]\eta_1 \ne \eta_2[/math], что приводит к аналогичному противоречию.
[math]\triangleleft[/math]


Теорема:
Если входная грамматика однозначна, то время выполнения алгоритма Эрли для слова длины [math]n[/math] составляет [math]O(n^2)[/math].
Доказательство:
[math]\triangleright[/math]

Орагнизуем каждый список разбора [math]I_j[/math] таким образом, чтобы по любому символу [math]x \in \Sigma \cup N[/math], можно было за [math]O(1)[/math] получить список тех и только тех ситуаций, содержащихся в [math]I_j[/math], которые имеют вид [math][A \rightarrow \alpha \cdot x \beta, j][/math].

Время построения [math]I_0[/math] не зависит от входной строки.

Рассмотрим [math]I_j, \, j \gt 0[/math].

  1. При включении ситуаций по правилу [math](1)[/math] необходимо лишь просмотреть предыдущий список и для каждого его элемента выполнить константное число операций.
  2. Рассмотрим правило [math](2)[/math]. Можно считать, что внутри цикла [math](*)[/math] рассматриваются те и только те ситуации, которые удовлетворяют условию (так как список таких ситуаций можно по нетерминалу получить за [math]O(1)[/math]). Тогда каждая такая ситуация будет добавлена в список и, исходя из леммы 2, попытка добавления будет единственной. А так как по лемме 1 всего в списке [math]I_j[/math] находится [math]O(j)[/math] ситуаций, то суммарно за все итерации внешнего цикла while внутри цикла [math](*)[/math] будет рассмотрено [math]O(j)[/math] ситуаций.
  3. Так как грамматика фиксирована, то при применении правила [math](3)[/math] при рассмотрении любой ситуации количество включаемых ситуаций не превосходит некоторой константы, поэтому для каждой рассмотренной ситуации будет выполнено [math]O(1)[/math] операций.
Таким образом, на построение списка [math]I_j[/math] будет потрачено [math]O(j)[/math] операций. Тогда время работы алгоритма составляет [math]O(n^2)[/math].
[math]\triangleleft[/math]

См. также

Источники информации

  • А. Ахо, Дж. Ульман. Теория синтакcического анализа, перевода и компиляции. Том 1. Синтакcический анализ.