Алгоритм Эрли, доказательство оценки O(n^2) для однозначной грамматики — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
(Алгоритм)
Строка 29: Строка 29:
 
== Доказательство эквивалентности ==
 
== Доказательство эквивалентности ==
  
В циклах, помеченных <tex>(*)</tex> и <tex>(**)</tex>, просматривается не весь список <tex>I_j</tex>, а только те ситуации, которые были добавлены на предыдущей итерации цикла <code>while</code>. Данная модификация является корректной.
+
В циклах, помеченных <tex>(*)</tex> и <tex>(**)</tex>, просматривается не весь список <tex>D_j</tex>, а только те ситуации, которые были добавлены на предыдущей итерации цикла <code>while</code>. Данная модификация является корректной.
 
# Рассмотрим цикл <tex>(*)</tex>. Если в текущей ситуации <tex>[B \rightarrow \eta \cdot, i]</tex> этого цикла <tex>i \ne j</tex>, то во внутреннем цикле просматривается список с меньшим индексом, в который новые ситуации больше не добавляются. Поэтому после первого просмотра этого списка будут добавлены все ситуации, удовлетворяющие условию, и больше ситуацию <tex>[B \rightarrow \eta \cdot, i]</tex> в цикле <tex>(*)</tex> рассматривать не нужно. Если же <tex>i = j</tex>, то <tex>\eta \Rightarrow^* \varepsilon</tex>, что возможно, только если <tex>B = S', \eta = \varepsilon</tex>. Тогда во внутреннем цикле не будет добавлено ни одной ситуации, так как <tex>S'</tex> не встречается в правых частях правил.
 
# Рассмотрим цикл <tex>(*)</tex>. Если в текущей ситуации <tex>[B \rightarrow \eta \cdot, i]</tex> этого цикла <tex>i \ne j</tex>, то во внутреннем цикле просматривается список с меньшим индексом, в который новые ситуации больше не добавляются. Поэтому после первого просмотра этого списка будут добавлены все ситуации, удовлетворяющие условию, и больше ситуацию <tex>[B \rightarrow \eta \cdot, i]</tex> в цикле <tex>(*)</tex> рассматривать не нужно. Если же <tex>i = j</tex>, то <tex>\eta \Rightarrow^* \varepsilon</tex>, что возможно, только если <tex>B = S', \eta = \varepsilon</tex>. Тогда во внутреннем цикле не будет добавлено ни одной ситуации, так как <tex>S'</tex> не встречается в правых частях правил.
 
# Теперь рассмотрим цикл <tex>(**)</tex>. Так как для каждой ситуации <tex>[B \rightarrow \alpha \cdot A \eta, k]</tex> в список добавляется новая ситуация, соответствующая правилу из грамматики, а грамматика фиксирована, то после первого просмотра будут добавлены все возможные ситуации для <tex>[B \rightarrow \alpha \cdot A \eta, k]</tex>.
 
# Теперь рассмотрим цикл <tex>(**)</tex>. Так как для каждой ситуации <tex>[B \rightarrow \alpha \cdot A \eta, k]</tex> в список добавляется новая ситуация, соответствующая правилу из грамматики, а грамматика фиксирована, то после первого просмотра будут добавлены все возможные ситуации для <tex>[B \rightarrow \alpha \cdot A \eta, k]</tex>.
Строка 38: Строка 38:
 
|about=1
 
|about=1
 
|statement=
 
|statement=
<tex>\forall\,j: 1 \le j \le n</tex> в списке <tex>I_j</tex> находится <tex>O(j)</tex> ситуаций.
+
<tex>\forall\,j: 1 \le j \le n</tex> в списке <tex>D_j</tex> находится <tex>O(j)</tex> ситуаций.
 
|proof=
 
|proof=
Так как грамматика фиксирована, то <tex>\forall i</tex> количество ситуаций вида <tex>[A \rightarrow \alpha \cdot \beta, i]</tex> не больше некоторой константы. Таким образом, поскольку в <tex>I_j</tex> находятся ситуации, у которых <tex>0 \le i \le j</tex>, всего в <tex>I_j</tex> будет <tex>O(j)</tex> ситуаций.
+
Так как грамматика фиксирована, то <tex>\forall i</tex> количество ситуаций вида <tex>[A \rightarrow \alpha \cdot \beta, i]</tex> не больше некоторой константы. Таким образом, поскольку в <tex>D_j</tex> находятся ситуации, у которых <tex>0 \le i \le j</tex>, всего в <tex>D_j</tex> будет <tex>O(j)</tex> ситуаций.
 
}}
 
}}
  
Строка 47: Строка 47:
 
|about=2
 
|about=2
 
|statement=
 
|statement=
Пусть <tex>\Gamma = (N, \Sigma, P, S)</tex> {{---}} однозначная КС-грамматика без непорождающих нетерминалов и <tex>a_1 \dots a_n</tex> {{---}} цепочка из <tex>\Sigma^*</tex>. Тогда алгоритм Эрли пытается включить <tex>[A \rightarrow \alpha \cdot \beta, i]</tex> в <tex>I_j</tex> не более одного раза, если <tex>\alpha \ne \varepsilon</tex>.
+
Пусть <tex>\Gamma = (N, \Sigma, P, S)</tex> {{---}} однозначная КС-грамматика без непорождающих нетерминалов и <tex>a_1 \dots a_n</tex> {{---}} цепочка из <tex>\Sigma^*</tex>. Тогда алгоритм Эрли пытается включить <tex>[A \rightarrow \alpha \cdot \beta, i]</tex> в <tex>D_j</tex> не более одного раза, если <tex>\alpha \ne \varepsilon</tex>.
 
|proof=
 
|proof=
Ситуацию <tex>[A \rightarrow \alpha \cdot \beta, i]</tex> можно включить в <tex>I_j</tex> только по правилам <tex>(1)</tex> (если последний символ <tex>\alpha</tex> — терминал) и <tex>(2)</tex> (если нетерминал). В первом случае результат очевиден. Во втором случае допустим, что <tex>[A \rightarrow \alpha'B \cdot \beta, i]</tex> включается в <tex>I_j</tex>, когда рассматриваются две ситуации <tex>[B \rightarrow \eta_1 \cdot, k_1]</tex> и <tex>[B \rightarrow \eta_2 \cdot, k_2]</tex> (они различны, так как в цикле <tex>(*)</tex> каждая ситуация из каждого списка рассматривается по одному разу). Тогда ситуация <tex>[A \rightarrow \alpha' \cdot B\beta, i]</tex> должна оказаться одновременно в <tex>I_{k_1}</tex> и в <tex>I_{k_2}</tex>. Таким образом, получаем:
+
Ситуацию <tex>[A \rightarrow \alpha \cdot \beta, i]</tex> можно включить в <tex>D_j</tex> только по правилам <tex>(1)</tex> (если последний символ <tex>\alpha</tex> — терминал) и <tex>(2)</tex> (если нетерминал). В первом случае результат очевиден. Во втором случае допустим, что <tex>[A \rightarrow \alpha'B \cdot \beta, i]</tex> включается в <tex>D_j</tex>, когда рассматриваются две ситуации <tex>[B \rightarrow \eta_1 \cdot, k_1]</tex> и <tex>[B \rightarrow \eta_2 \cdot, k_2]</tex> (они различны, так как в цикле <tex>(*)</tex> каждая ситуация из каждого списка рассматривается по одному разу). Тогда ситуация <tex>[A \rightarrow \alpha' \cdot B\beta, i]</tex> должна оказаться одновременно в <tex>D_{k_1}</tex> и в <tex>D_{k_2}</tex>. Таким образом, получаем:
 
* <tex>\alpha' \Rightarrow^* a_{i+1} \ldots a_{k_1}</tex> и <tex>\alpha' \Rightarrow^* a_{i+1} \ldots a_{k_2}</tex>;
 
* <tex>\alpha' \Rightarrow^* a_{i+1} \ldots a_{k_1}</tex> и <tex>\alpha' \Rightarrow^* a_{i+1} \ldots a_{k_2}</tex>;
 
* <tex>\eta_1 \Rightarrow^* a_{k_1+1} \ldots a_j</tex> и <tex>\eta_2 \Rightarrow^* a_{k_2+1} \ldots a_j</tex>.
 
* <tex>\eta_1 \Rightarrow^* a_{k_1+1} \ldots a_j</tex> и <tex>\eta_2 \Rightarrow^* a_{k_2+1} \ldots a_j</tex>.
Строка 62: Строка 62:
 
Если входная грамматика однозначна, то время выполнения алгоритма Эрли для слова длины <tex>n</tex> составляет <tex>O(n^2)</tex>.
 
Если входная грамматика однозначна, то время выполнения алгоритма Эрли для слова длины <tex>n</tex> составляет <tex>O(n^2)</tex>.
 
|proof=
 
|proof=
Орагнизуем каждый список разбора <tex>I_j</tex> таким образом, чтобы по любому символу <tex>x \in \Sigma \cup N</tex>, можно было за <tex>O(1)</tex> получить список тех и только тех ситуаций, содержащихся в <tex>I_j</tex>, которые имеют вид <tex>[A \rightarrow \alpha \cdot x \beta, j]</tex>.
+
Орагнизуем каждый список разбора <tex>D_j</tex> таким образом, чтобы по любому символу <tex>x \in \Sigma \cup N</tex>, можно было за <tex>O(1)</tex> получить список тех и только тех ситуаций, содержащихся в <tex>D_j</tex>, которые имеют вид <tex>[A \rightarrow \alpha \cdot x \beta, j]</tex>.
  
Время построения <tex>I_0</tex> не зависит от входной строки.
+
Время построения <tex>D_0</tex> не зависит от входной строки.
  
Рассмотрим <tex>I_j, \, j > 0</tex>.
+
Рассмотрим <tex>D_j, \, j > 0</tex>.
 
# При включении ситуаций по правилу <tex>(1)</tex> необходимо лишь просмотреть предыдущий список и для каждого его элемента выполнить константное число операций.
 
# При включении ситуаций по правилу <tex>(1)</tex> необходимо лишь просмотреть предыдущий список и для каждого его элемента выполнить константное число операций.
# Рассмотрим правило <tex>(2)</tex>. Можно считать, что внутри цикла <tex>(*)</tex> рассматриваются те и только те ситуации, которые удовлетворяют условию (так как список таких ситуаций можно по нетерминалу получить за <tex>O(1)</tex>). Тогда каждая такая ситуация будет добавлена в список и, исходя из леммы 2, попытка добавления будет единственной. А так как по лемме 1 всего в списке <tex>I_j</tex> находится <tex>O(j)</tex> ситуаций, то суммарно за все итерации внешнего цикла while внутри цикла <tex>(*)</tex> будет рассмотрено <tex>O(j)</tex> ситуаций.
+
# Рассмотрим правило <tex>(2)</tex>. Можно считать, что внутри цикла <tex>(*)</tex> рассматриваются те и только те ситуации, которые удовлетворяют условию (так как список таких ситуаций можно по нетерминалу получить за <tex>O(1)</tex>). Тогда каждая такая ситуация будет добавлена в список и, исходя из леммы 2, попытка добавления будет единственной. А так как по лемме 1 всего в списке <tex>D_j</tex> находится <tex>O(j)</tex> ситуаций, то суммарно за все итерации внешнего цикла while внутри цикла <tex>(*)</tex> будет рассмотрено <tex>O(j)</tex> ситуаций.
 
# Так как грамматика фиксирована, то при применении правила <tex>(3)</tex> при рассмотрении любой ситуации количество включаемых ситуаций не превосходит некоторой константы, поэтому для каждой рассмотренной ситуации будет выполнено <tex>O(1)</tex> операций.
 
# Так как грамматика фиксирована, то при применении правила <tex>(3)</tex> при рассмотрении любой ситуации количество включаемых ситуаций не превосходит некоторой константы, поэтому для каждой рассмотренной ситуации будет выполнено <tex>O(1)</tex> операций.
Таким образом, на построение списка <tex>I_j</tex> будет потрачено <tex>O(j)</tex> операций. Тогда время работы алгоритма составляет <tex>O(n^2)</tex>.
+
Таким образом, на построение списка <tex>D_j</tex> будет потрачено <tex>O(j)</tex> операций. Тогда время работы алгоритма составляет <tex>O(n^2)</tex>.
 
}}
 
}}
  

Версия 23:33, 4 января 2017

Алгоритм

Для начала модифицируем алгоритм Эрли.

Будем рассматривать грамматику без ε-правил и бесполезных символов.

function [math]\mathtt{earley_mod}(G, w)[/math]:
   // Инициализация 
   [math] D_{0} = \lbrace [S' \rightarrow \cdot S, 0] \rbrace [/math]
   useful_loop(0)
   for j = 1 .. n
       for [math][A \rightarrow \alpha \cdot a_{j} \beta, i] \in D_{j-1}[/math]
           [math]D_j[/math] [math] \cup[/math] = [math][A \rightarrow \alpha a_{j} \cdot \beta, i][/math]  // Первое правило 
       useful_loop(j) 
function useful_loop(j):
    [math]D_j'' = D_j[/math]
    while [math]D_j'' \ne \varnothing[/math]
        [math]D_j' = D_j''[/math]
        [math]D_j'' = \varnothing[/math]
        for [math][B \rightarrow \eta \cdot , i] \in D_j'[/math]             // Цикл (*) 
            for [math][A \rightarrow \alpha \cdot B \beta, k] \in D_{i}[/math]
                [math]D_j''[/math] [math] \cup[/math] = [math][A \rightarrow \alpha B \cdot \beta, k]  [/math] // Второе правило 
            
        for [math][B \rightarrow \alpha \cdot A \eta, k] \in D_j'[/math]        // Цикл (**) 
            for [math]\beta : (A \rightarrow \beta) \in P[/math]
                [math]D_j''[/math] [math] \cup[/math] = [math][A \rightarrow \cdot \beta, j][/math]     // Третье правило 
        [math]D_j[/math] [math] \cup[/math] = [math]D_j''[/math]

Доказательство эквивалентности

В циклах, помеченных [math](*)[/math] и [math](**)[/math], просматривается не весь список [math]D_j[/math], а только те ситуации, которые были добавлены на предыдущей итерации цикла while. Данная модификация является корректной.

  1. Рассмотрим цикл [math](*)[/math]. Если в текущей ситуации [math][B \rightarrow \eta \cdot, i][/math] этого цикла [math]i \ne j[/math], то во внутреннем цикле просматривается список с меньшим индексом, в который новые ситуации больше не добавляются. Поэтому после первого просмотра этого списка будут добавлены все ситуации, удовлетворяющие условию, и больше ситуацию [math][B \rightarrow \eta \cdot, i][/math] в цикле [math](*)[/math] рассматривать не нужно. Если же [math]i = j[/math], то [math]\eta \Rightarrow^* \varepsilon[/math], что возможно, только если [math]B = S', \eta = \varepsilon[/math]. Тогда во внутреннем цикле не будет добавлено ни одной ситуации, так как [math]S'[/math] не встречается в правых частях правил.
  2. Теперь рассмотрим цикл [math](**)[/math]. Так как для каждой ситуации [math][B \rightarrow \alpha \cdot A \eta, k][/math] в список добавляется новая ситуация, соответствующая правилу из грамматики, а грамматика фиксирована, то после первого просмотра будут добавлены все возможные ситуации для [math][B \rightarrow \alpha \cdot A \eta, k][/math].

Таким образом, во все списки будут добавлены ситуации, которые были бы добавлены в ходе обычного алгоритма. Очевидно, что лишних ситуаций добавлено не будет, так как в циклах [math](*)[/math] и [math](**)[/math] просматривается подмножество полного списка. Значит этот алгоритм эквивалентен оригинальному.

Время работы для однозначной грамматики

Лемма (1):
[math]\forall\,j: 1 \le j \le n[/math] в списке [math]D_j[/math] находится [math]O(j)[/math] ситуаций.
Доказательство:
[math]\triangleright[/math]
Так как грамматика фиксирована, то [math]\forall i[/math] количество ситуаций вида [math][A \rightarrow \alpha \cdot \beta, i][/math] не больше некоторой константы. Таким образом, поскольку в [math]D_j[/math] находятся ситуации, у которых [math]0 \le i \le j[/math], всего в [math]D_j[/math] будет [math]O(j)[/math] ситуаций.
[math]\triangleleft[/math]


Лемма (2):
Пусть [math]\Gamma = (N, \Sigma, P, S)[/math] — однозначная КС-грамматика без непорождающих нетерминалов и [math]a_1 \dots a_n[/math] — цепочка из [math]\Sigma^*[/math]. Тогда алгоритм Эрли пытается включить [math][A \rightarrow \alpha \cdot \beta, i][/math] в [math]D_j[/math] не более одного раза, если [math]\alpha \ne \varepsilon[/math].
Доказательство:
[math]\triangleright[/math]

Ситуацию [math][A \rightarrow \alpha \cdot \beta, i][/math] можно включить в [math]D_j[/math] только по правилам [math](1)[/math] (если последний символ [math]\alpha[/math] — терминал) и [math](2)[/math] (если нетерминал). В первом случае результат очевиден. Во втором случае допустим, что [math][A \rightarrow \alpha'B \cdot \beta, i][/math] включается в [math]D_j[/math], когда рассматриваются две ситуации [math][B \rightarrow \eta_1 \cdot, k_1][/math] и [math][B \rightarrow \eta_2 \cdot, k_2][/math] (они различны, так как в цикле [math](*)[/math] каждая ситуация из каждого списка рассматривается по одному разу). Тогда ситуация [math][A \rightarrow \alpha' \cdot B\beta, i][/math] должна оказаться одновременно в [math]D_{k_1}[/math] и в [math]D_{k_2}[/math]. Таким образом, получаем:

  • [math]\alpha' \Rightarrow^* a_{i+1} \ldots a_{k_1}[/math] и [math]\alpha' \Rightarrow^* a_{i+1} \ldots a_{k_2}[/math];
  • [math]\eta_1 \Rightarrow^* a_{k_1+1} \ldots a_j[/math] и [math]\eta_2 \Rightarrow^* a_{k_2+1} \ldots a_j[/math].

Следовательно, [math]\alpha' \eta_1 \Rightarrow^* a_{i+1} \ldots a_j[/math] и [math]\alpha' \eta_2 \Rightarrow^* a_{i+1} \ldots a_j[/math].
Заметим, что [math]S \Rightarrow^* \gamma A \delta \Rightarrow^* a_1 \ldots a_i A \delta \Rightarrow a_1 \ldots a_i \alpha' B \beta \delta[/math]. Предположим, что [math]\beta \delta \Rightarrow^* w'[/math] (ведь в грамматике нет непорождающих нетерминалов). Тогда [math]S \Rightarrow^* a_1 \ldots a_i \alpha' \eta_1 w'[/math] и аналогично [math]S \Rightarrow^* a_1 \ldots a_i \alpha' \eta_2 w'[/math].

Таким образом, если [math]k_1 \ne k_2[/math], то подстрока [math]a_{i+1} \ldots a_j[/math] выводится двумя различными способами из [math]\alpha' \eta_1[/math] и [math]\alpha' \eta_2[/math] (поскольку в первом случае [math]\alpha' \Rightarrow^* a_{i+1} \ldots a_{k_1}[/math], а во втором [math]\alpha' \Rightarrow^* a_{i+1} \ldots a_{k_2}[/math]), то есть у строки [math]a_1 \ldots a_jw'[/math] есть два различных вывода, что противоречит однозначности грамматики. Если же [math]k_1 = k_2[/math], то [math]\eta_1 \ne \eta_2[/math], что приводит к аналогичному противоречию.
[math]\triangleleft[/math]


Теорема:
Если входная грамматика однозначна, то время выполнения алгоритма Эрли для слова длины [math]n[/math] составляет [math]O(n^2)[/math].
Доказательство:
[math]\triangleright[/math]

Орагнизуем каждый список разбора [math]D_j[/math] таким образом, чтобы по любому символу [math]x \in \Sigma \cup N[/math], можно было за [math]O(1)[/math] получить список тех и только тех ситуаций, содержащихся в [math]D_j[/math], которые имеют вид [math][A \rightarrow \alpha \cdot x \beta, j][/math].

Время построения [math]D_0[/math] не зависит от входной строки.

Рассмотрим [math]D_j, \, j \gt 0[/math].

  1. При включении ситуаций по правилу [math](1)[/math] необходимо лишь просмотреть предыдущий список и для каждого его элемента выполнить константное число операций.
  2. Рассмотрим правило [math](2)[/math]. Можно считать, что внутри цикла [math](*)[/math] рассматриваются те и только те ситуации, которые удовлетворяют условию (так как список таких ситуаций можно по нетерминалу получить за [math]O(1)[/math]). Тогда каждая такая ситуация будет добавлена в список и, исходя из леммы 2, попытка добавления будет единственной. А так как по лемме 1 всего в списке [math]D_j[/math] находится [math]O(j)[/math] ситуаций, то суммарно за все итерации внешнего цикла while внутри цикла [math](*)[/math] будет рассмотрено [math]O(j)[/math] ситуаций.
  3. Так как грамматика фиксирована, то при применении правила [math](3)[/math] при рассмотрении любой ситуации количество включаемых ситуаций не превосходит некоторой константы, поэтому для каждой рассмотренной ситуации будет выполнено [math]O(1)[/math] операций.
Таким образом, на построение списка [math]D_j[/math] будет потрачено [math]O(j)[/math] операций. Тогда время работы алгоритма составляет [math]O(n^2)[/math].
[math]\triangleleft[/math]

См. также

Источники информации

  • А. Ахо, Дж. Ульман. Теория синтакcического анализа, перевода и компиляции. Том 1. Синтакcический анализ.