Алгоритм Эрли, доказательство оценки O(n^2) для однозначной грамматики — различия между версиями
Zernov (обсуждение | вклад) (→Время работы для однозначной грамматики) |
Zernov (обсуждение | вклад) (→Время работы для однозначной грамматики) |
||
Строка 70: | Строка 70: | ||
Рассмотрим <tex>D_j, \, j > 0</tex>. | Рассмотрим <tex>D_j, \, j > 0</tex>. | ||
# При включении ситуаций по правилу <tex>(1)</tex> необходимо лишь просмотреть предыдущий список и для каждого его элемента выполнить константное число операций. | # При включении ситуаций по правилу <tex>(1)</tex> необходимо лишь просмотреть предыдущий список и для каждого его элемента выполнить константное число операций. | ||
− | # Рассмотрим правило <tex>(2)</tex>. Можно считать, что внутри цикла <tex>(*)</tex> рассматриваются те и только те ситуации, которые удовлетворяют условию (так как список таких ситуаций можно по нетерминалу получить за <tex>O(1)</tex>). Тогда каждая такая ситуация будет добавлена в список и, исходя из леммы 2, попытка добавления будет единственной. А так как по лемме 1 всего в списке <tex>D_j</tex> находится <tex>O(j)</tex> ситуаций, то суммарно за все итерации внешнего цикла while внутри цикла <tex>(*)</tex> будет рассмотрено <tex>O(j)</tex> ситуаций. | + | # Рассмотрим правило <tex>(2)</tex>. Можно считать, что внутри цикла <tex>(*)</tex> рассматриваются те и только те ситуации, которые удовлетворяют условию (так как список таких ситуаций можно по нетерминалу получить за <tex>O(1)</tex> следующим образом: каждый раз, когда мы добавляем ситацаию вида <tex>[A \rightarrow \alpha \cdot B \beta, i]</tex> в <tex>D_j</tex>, мы просмотрим в заранее заготовленном массиве для <tex>D_j</tex>, есть ли в <tex>D_j</tex> ситуации вида <tex>[B \rightarrow \eta \cdot, j]</tex>. Если да, то добавим <tex>[A \rightarrow \alpha B \cdot \beta, i]</tex> в <tex>D_j</tex>.). Тогда каждая такая ситуация будет добавлена в список и, исходя из леммы 2, попытка добавления будет единственной. А так как по лемме 1 всего в списке <tex>D_j</tex> находится <tex>O(j)</tex> ситуаций, то суммарно за все итерации внешнего цикла while внутри цикла <tex>(*)</tex> будет рассмотрено <tex>O(j)</tex> ситуаций. |
# Так как грамматика фиксирована, то при применении правила <tex>(3)</tex> при рассмотрении любой ситуации количество включаемых ситуаций не превосходит некоторой константы, поэтому для каждой рассмотренной ситуации будет выполнено <tex>O(1)</tex> операций. | # Так как грамматика фиксирована, то при применении правила <tex>(3)</tex> при рассмотрении любой ситуации количество включаемых ситуаций не превосходит некоторой константы, поэтому для каждой рассмотренной ситуации будет выполнено <tex>O(1)</tex> операций. | ||
Таким образом, на построение списка <tex>D_j</tex> будет потрачено <tex>O(j)</tex> операций. Тогда время работы алгоритма составляет <tex>O(n^2)</tex>. | Таким образом, на построение списка <tex>D_j</tex> будет потрачено <tex>O(j)</tex> операций. Тогда время работы алгоритма составляет <tex>O(n^2)</tex>. |
Версия 00:06, 5 января 2017
Содержание
Алгоритм
Для начала модифицируем алгоритм Эрли.
Будем рассматривать грамматику без ε-правил и бесполезных символов.
function: // Инициализация useful_loop(0) for j = 1 .. n for = // Первое правило useful_loop(j)
function useful_loop(j):while for // Цикл (*) for = // Второе правило for // Цикл (**) for = // Третье правило =
Доказательство эквивалентности
В циклах, помеченных while
. Данная модификация является корректной.
- Рассмотрим цикл . Если в текущей ситуации этого цикла , то во внутреннем цикле просматривается список с меньшим индексом, в который новые ситуации больше не добавляются. Поэтому после первого просмотра этого списка будут добавлены все ситуации, удовлетворяющие условию, и больше ситуацию в цикле рассматривать не нужно. Если же , то , что возможно, только если . Тогда во внутреннем цикле не будет добавлено ни одной ситуации, так как не встречается в правых частях правил.
- Теперь рассмотрим цикл . Так как для каждой ситуации в список добавляется новая ситуация, соответствующая правилу из грамматики, а грамматика фиксирована, то после первого просмотра будут добавлены все возможные ситуации для .
Таким образом, во все списки будут добавлены ситуации, которые были бы добавлены в ходе обычного алгоритма. Очевидно, что лишних ситуаций добавлено не будет, так как в циклах
и просматривается подмножество полного списка. Значит этот алгоритм эквивалентен оригинальному.Время работы для однозначной грамматики
Лемма (1): |
в списке находится ситуаций. |
Доказательство: |
Так как грамматика фиксирована, то | количество ситуаций вида не больше некоторой константы. Таким образом, поскольку в находятся ситуации, у которых , всего в будет ситуаций.
Лемма (2): |
Пусть — однозначная КС-грамматика без непорождающих нетерминалов и — цепочка из . Тогда алгоритм Эрли пытается включить в не более одного раза, если . |
Доказательство: |
Ситуацию можно включить в только по правилам (если последний символ — терминал) и (если нетерминал). В первом случае результат очевиден. Во втором случае допустим, что включается в , когда рассматриваются две ситуации и (они различны, так как в цикле каждая ситуация из каждого списка рассматривается по одному разу). Тогда ситуация должна оказаться одновременно в и в . Таким образом, получаем:
Следовательно, |
Теорема: |
Если входная грамматика однозначна, то время выполнения алгоритма Эрли для слова длины составляет . |
Доказательство: |
Орагнизуем каждый список разбора таким образом, чтобы по любому символу , можно было за получить список тех и только тех ситуаций, содержащихся в , которые имеют вид .Время построения не зависит от входной строки.Рассмотрим .
|
См. также
Источники информации
- А. Ахо, Дж. Ульман. Теория синтакcического анализа, перевода и компиляции. Том 1. Синтакcический анализ.