Meet-in-the-middle — различия между версиями
Amoniy (обсуждение | вклад)  (→Алгоритм решения)  | 
				Amoniy (обсуждение | вклад)   (→Реализация)  | 
				||
| (не показано 13 промежуточных версий этого же участника) | |||
| Строка 1: | Строка 1: | ||
{{Определение  | {{Определение  | ||
|definition=  | |definition=  | ||
| − | '''Meet-in-the-middle''  | + | '''Встреча в середине''' (англ. ''Meet-in-the-middle'')  — это метод решения уравнения вида <tex> f({x}) = g({y}) </tex>, где <tex> x \in {X} </tex> и <tex> y \in {Y} </tex>, который работает за время <tex> O(F(X) + Y \times G_X(y))</tex>, где <tex> F(X) </tex> {{---}} время построения множества <tex> X </tex>, <tex> G_X(y) </tex> {{---}} время поиска элемента <tex> x </tex> в множестве <tex> X </tex>, удовлетворяющее решению при заданном <tex> y </tex>, или проверка, что такого <tex> x </tex> не существует.  | 
}}  | }}  | ||
'''Meet-in-the-middle''' разбивает задачу пополам и решает всю задачу через частичный расчет половинок. Он работает следующим образом: переберем все возможные значения <tex> {x} </tex> и запишем пару значений <tex> ({x},{f({x})}) </tex>  в множество. Затем будем перебирать всевозможные значения <tex> y </tex>, для каждого из них будем вычислять <tex> g(y) </tex>, которое мы будем искать в нашем множестве. Если в качестве множества использовать отсортированный массив, а в качестве функции поиска {{---}} [[Целочисленный двоичный поиск | бинарный поиск]], то время работы нашего алгоритма составляет <tex> {O(X\log{X})} </tex> на сортировку, и <tex> {O(Y\log{X})} </tex> на двоичный поиск, что дает в сумме <tex>{O((X + Y)\log{X}})</tex>.  | '''Meet-in-the-middle''' разбивает задачу пополам и решает всю задачу через частичный расчет половинок. Он работает следующим образом: переберем все возможные значения <tex> {x} </tex> и запишем пару значений <tex> ({x},{f({x})}) </tex>  в множество. Затем будем перебирать всевозможные значения <tex> y </tex>, для каждого из них будем вычислять <tex> g(y) </tex>, которое мы будем искать в нашем множестве. Если в качестве множества использовать отсортированный массив, а в качестве функции поиска {{---}} [[Целочисленный двоичный поиск | бинарный поиск]], то время работы нашего алгоритма составляет <tex> {O(X\log{X})} </tex> на сортировку, и <tex> {O(Y\log{X})} </tex> на двоичный поиск, что дает в сумме <tex>{O((X + Y)\log{X}})</tex>.  | ||
| Строка 16: | Строка 16: | ||
=== Реализация ===  | === Реализация ===  | ||
   <font color=darkgreen>// sum — массив сумм a + b, cnt — счетчик массива sum</font>  |    <font color=darkgreen>// sum — массив сумм a + b, cnt — счетчик массива sum</font>  | ||
| − |    '''function''' findsum('''int[]''' A): String  | + |    '''function''' findsum('''int['''N''']''' A): String  | 
     '''for''' a = 0..N - 1  |      '''for''' a = 0..N - 1  | ||
       '''for''' b = 0..N - 1  |        '''for''' b = 0..N - 1  | ||
| Строка 35: | Строка 35: | ||
== Задача о рюкзаке ==  | == Задача о рюкзаке ==  | ||
| − | Классической задачей является задача о наиболее эффективной упаковке рюкзака. Каждый предмет характеризуется весом (<tex> {w_{i} \leqslant 10^{9}} </tex> ) и ценностью (<tex>{cost_{i} \leqslant 10^{9}} </tex>). В рюкзак, ограниченный по весу, необходимо набрать вещей с максимальной суммарной стоимостью. Для ее решения изначальное множество вещей N разбивается на два равных(или примерно равных) подмножества, для которых за приемлемое время можно перебрать все варианты и подсчитать суммарный вес и стоимость, а затем для каждого из них найти группу вещей из первого подмножества с максимальной стоимостью, укладывающуюся в ограничение по весу рюкзака. Сложность алгоритма <tex>O({2^{N  | + | Классической задачей является задача о наиболее эффективной упаковке рюкзака. Каждый предмет характеризуется весом (<tex> {w_{i} \leqslant 10^{9}} </tex> ) и ценностью (<tex>{cost_{i} \leqslant 10^{9}} </tex>). В рюкзак, ограниченный по весу, необходимо набрать вещей с максимальной суммарной стоимостью. Для ее решения изначальное множество вещей N разбивается на два равных(или примерно равных) подмножества, для которых за приемлемое время можно перебрать все варианты и подсчитать суммарный вес и стоимость, а затем для каждого из них найти группу вещей из первого подмножества с максимальной стоимостью, укладывающуюся в ограничение по весу рюкзака. Сложность алгоритма <tex>O({2^{\frac{N}{2}}}\times{N})</tex>. Память <tex> O({2^{\frac{N}{2}}})</tex>.  | 
=== Алгоритм ===  | === Алгоритм ===  | ||
| Строка 42: | Строка 42: | ||
=== Реализация ===  | === Реализация ===  | ||
| − |    <font color=darkgreen>// N — количество всех вещей, w[] — массив весов всех вещей, cost[] — массив стоимостей всех вещей, R — ограничение по весу рюкзака.</font>  | + |    <font color=darkgreen>// N — количество всех вещей, w[N] — массив весов всех вещей, cost[N] — массив стоимостей всех вещей, R — ограничение по весу рюкзака.</font>  | 
| − |    '''function''' knapsack(): '''int'''  | + |    '''function''' knapsack('''int['''N''']''' w, '''int['''N''']''' cost, '''int''' R): '''int'''  | 
     sn = N / 2  |      sn = N / 2  | ||
     fn = N - sn  |      fn = N - sn  | ||
| Строка 65: | Строка 65: | ||
     '''return''' ans  |      '''return''' ans  | ||
| − | Итоговое время работы <tex> {O({2^{N  | + | Итоговое время работы <tex> {O({2^{\frac{N}{2}}}\times({N}+\log{2^{\frac{N}{2}}}))} = O({2^{\frac{N}{2}}}\times{N}) </tex>.  | 
== Задача о количестве полных подграфов в графе ==  | == Задача о количестве полных подграфов в графе ==  | ||
| Строка 76: | Строка 76: | ||
Наивное решение — перебор всех возможных подграфов и проверка для каждого, что он является кликой, сложность — <tex>O(2^N \times N^2)</tex>  | Наивное решение — перебор всех возможных подграфов и проверка для каждого, что он является кликой, сложность — <tex>O(2^N \times N^2)</tex>  | ||
| − | Этот алгоритм можно улучшить до <tex>O(2^N \times N)</tex>. Для этого нужно в функции перебора хранить маску вершин, которые мы ещё можем добавить. Поддерживая эту маску, можно добавлять только «нужные» вершины, и тогда не нужно будет в конце проверять подграф на то что он — клика. Добавлять вершину можно за <tex>O(1)</tex>, используя побитовое   | + | Этот алгоритм можно улучшить до <tex>O(2^N \times N)</tex>. Для этого нужно в функции перебора хранить маску вершин, которые мы ещё можем добавить. Поддерживая эту маску, можно добавлять только «нужные» вершины, и тогда не нужно будет в конце проверять подграф на то что он — клика. Добавлять вершину можно за <tex>O(1)</tex>, используя [[Побитовые_операции#Побитовое И | побитовое И]] текущей маски и строчки матрицы смежности добавляемой вершины.  | 
===Алгоритм решения===  | ===Алгоритм решения===  | ||
| − | Разбиваем граф <tex>G</tex> на 2 графа <tex>{G}_1</tex> и <tex>{G}_2</tex> по <tex>N  | + | Разбиваем граф <tex>G</tex> на <tex>2</tex> графа <tex>{G}_1</tex> и <tex>{G}_2</tex> по <tex>\dfrac{N}{2}</tex> вершин. Находим за <tex>O(2^{\frac{N}{2}})</tex> все клики в каждом из них.  | 
Теперь надо узнать для каждой клики графа <tex>{G}_1</tex> количество клик графа <tex>{G}_2</tex>, таких, что их объединение — клика. Их сумма и есть итоговый ответ.  | Теперь надо узнать для каждой клики графа <tex>{G}_1</tex> количество клик графа <tex>{G}_2</tex>, таких, что их объединение — клика. Их сумма и есть итоговый ответ.  | ||
| − | Для одной клики <tex>K</tex> графа <tex>{G}_1</tex> может быть несколько подходящих клик в <tex>{G}_2</tex>. О клике <tex>K</tex> мы "знаем" только маску вершин графа <tex>{G}_2</tex>, которые ещё можно добавить. Для каждой такой маски в <tex>{G}_2</tex> нужно предподсчитать ответ.    | + | Для одной клики <tex>K</tex> графа <tex>{G}_1</tex> может быть несколько подходящих клик в <tex>{G}_2</tex>. О клике <tex>K</tex> мы ''"знаем"'' только маску вершин графа <tex>{G}_2</tex>, которые ещё можно добавить. Для каждой такой маски в <tex>{G}_2</tex> нужно предподсчитать ответ.    | 
С помощью динамического программирования предподсчитаем для каждой маски вершин графа <tex>{G}_2</tex> количество клик, вершины которых являются подмножеством выбранной маски. Количество состояний — <tex>2^{\frac{N}{2}}</tex>. Количество переходов:<tex>N</tex> . Асимптотика — <tex>O(2^{\frac{N}{2}} \times N)</tex>.  | С помощью динамического программирования предподсчитаем для каждой маски вершин графа <tex>{G}_2</tex> количество клик, вершины которых являются подмножеством выбранной маски. Количество состояний — <tex>2^{\frac{N}{2}}</tex>. Количество переходов:<tex>N</tex> . Асимптотика — <tex>O(2^{\frac{N}{2}} \times N)</tex>.  | ||
| − | Для каждой клики <tex>K</tex> (в том числе и пустой) графа <tex>{G}_1</tex> прибавим к глобальному ответу предподсчитанное количество клик, которые можно добавить к <tex>K</tex> (  | + | Для каждой клики <tex>K</tex> (в том числе и пустой) графа <tex>{G}_1</tex> прибавим к глобальному ответу предподсчитанное количество клик, которые можно добавить к <tex>K</tex> (в том числе и пустых). Асимптотика: <tex>O(2^{\frac{N}{2}})</tex>.  | 
Итоговая сложность: <tex>O(2^{\frac{N}{2}} \times N)</tex>  | Итоговая сложность: <tex>O(2^{\frac{N}{2}} \times N)</tex>  | ||
| Строка 96: | Строка 96: | ||
=== Алгоритм решения ===    | === Алгоритм решения ===    | ||
| − | 1. Сгенерируем '''BFS'''-ом все состояния, доступные из начала и конца за <tex> {N  | + | 1. Сгенерируем '''BFS'''-ом все состояния, доступные из начала и конца за <tex> {\dfrac{N}{2}} </tex> или меньше ходов.  | 
2. Найдем состояния, которые достижимы из начала и из конца.  | 2. Найдем состояния, которые достижимы из начала и из конца.  | ||
Версия 16:32, 5 января 2017
| Определение: | 
| Встреча в середине (англ. Meet-in-the-middle) — это метод решения уравнения вида , где и , который работает за время , где — время построения множества , — время поиска элемента в множестве , удовлетворяющее решению при заданном , или проверка, что такого не существует. | 
Meet-in-the-middle разбивает задачу пополам и решает всю задачу через частичный расчет половинок. Он работает следующим образом: переберем все возможные значения и запишем пару значений в множество. Затем будем перебирать всевозможные значения , для каждого из них будем вычислять , которое мы будем искать в нашем множестве. Если в качестве множества использовать отсортированный массив, а в качестве функции поиска — бинарный поиск, то время работы нашего алгоритма составляет на сортировку, и на двоичный поиск, что дает в сумме .
Содержание
Задача о нахождении четырех чисел с суммой равной нулю
Дан массив целых чисел . Требуется найти любые числа, сумма которых равна (одинаковые элементы могут быть использованы несколько раз).
Например : . Решением данной задачи является, например, четверка чисел или .
Наивный алгоритм заключается в переборе всевозможных комбинаций чисел. Это решение работает за . Теперь, с помощью Meet-in-the-middle мы можем сократить время работы до .
Для этого заметим, что сумму можно записать как . Мы будем хранить все пар сумм в массиве , который мы отсортируем. Далее перебираем все пар сумм и проверяем бинарным поиском, есть ли сумма в массиве .
Реализация
 // sum — массив сумм a + b, cnt — счетчик массива sum
 function findsum(int[N] A): String
   for a = 0..N - 1
     for b = 0..N - 1
       sum[cnt].res = A[a] + A[b]
       sum[cnt].a = a
       sum[cnt].b = b
       cnt++
   sort(sum, key = "res") // сортируем sum по полю res 
   for c = 0..N - 1
     for d = 0..N - 1
       if сумма - (A[c] + A[d]) есть в массив sum
          index = индекс суммы -(A[c] + A[d])
          return (sum[index].a, sum[index].b, A[c], A[d])
   return "No solution"
Итоговое время работы .
Если вместо отсортированного массива использовать хэш-таблицу, то задачу можно будет решить за время .
Задача о рюкзаке
Классической задачей является задача о наиболее эффективной упаковке рюкзака. Каждый предмет характеризуется весом ( ) и ценностью (). В рюкзак, ограниченный по весу, необходимо набрать вещей с максимальной суммарной стоимостью. Для ее решения изначальное множество вещей N разбивается на два равных(или примерно равных) подмножества, для которых за приемлемое время можно перебрать все варианты и подсчитать суммарный вес и стоимость, а затем для каждого из них найти группу вещей из первого подмножества с максимальной стоимостью, укладывающуюся в ограничение по весу рюкзака. Сложность алгоритма . Память .
Алгоритм
Разделим наше множество на две части. Подсчитаем все подмножества из первой части и будем хранить их в массиве . Отсортируем массив по весу. Далее пройдемся по этому массиву и оставим только те подмножества, для которых не существует другого подмножества с меньшим весом и большей стоимостью. Очевидно, что подмножества, для которых существует другое, более легкое и одновременно более ценное подмножество, можно удалять. Таким образом в массиве мы имеем подмножества, отсортированные не только по весу, но и по стоимости. Тогда начнем перебирать все возможные комбинации вещей из второй половины и находить бинарным поиском удовлетворяющие нам подмножества из первой половины, хранящиеся в массиве .
Реализация
 // N — количество всех вещей, w[N] — массив весов всех вещей, cost[N] — массив стоимостей всех вещей, R — ограничение по весу рюкзака.
 function knapsack(int[N] w, int[N] cost, int R): int
   sn = N / 2
   fn = N - sn
   for mask = 0..2 ** sn - 1
     for j = 0..sn
       if j-ый бит mask == 1
         first[i].w += w[j]
         first[i].c += cost[j]
   sort(first, key = "w") // сортируем first по весу 
   for i = 0..2 ** sn - 1
     if существует такое подмножество с индексом j, что first[j].w  first[i].w and first[j].c  first[i].c
       удалим множество с индексом i из массива first
   for mask = 0..2 ** fn - 1
     for j = 0..fn
       if j-ый бит mask == 1
         curw += w[j + sn]
         curcost += cost[j + sn]
     index = позиция, найденная бинарным поиском в массиве first, подмножества с максимальным весом, не превыщающим R - curv
     if first[index].w  R - curw and first[index].c + curcost  ans
       ans = first[index].c + curcost
   return ans
Итоговое время работы .
Задача о количестве полных подграфов в графе
Дан граф , в котором вершин. Требуется подсчитать количество клик.
Наивное решение — перебор всех возможных подграфов и проверка для каждого, что он является кликой, сложность —
Этот алгоритм можно улучшить до . Для этого нужно в функции перебора хранить маску вершин, которые мы ещё можем добавить. Поддерживая эту маску, можно добавлять только «нужные» вершины, и тогда не нужно будет в конце проверять подграф на то что он — клика. Добавлять вершину можно за , используя побитовое И текущей маски и строчки матрицы смежности добавляемой вершины.
Алгоритм решения
Разбиваем граф на графа и по вершин. Находим за все клики в каждом из них.
Теперь надо узнать для каждой клики графа количество клик графа , таких, что их объединение — клика. Их сумма и есть итоговый ответ.
Для одной клики графа может быть несколько подходящих клик в . О клике мы "знаем" только маску вершин графа , которые ещё можно добавить. Для каждой такой маски в нужно предподсчитать ответ. С помощью динамического программирования предподсчитаем для каждой маски вершин графа количество клик, вершины которых являются подмножеством выбранной маски. Количество состояний — . Количество переходов: . Асимптотика — .
Для каждой клики (в том числе и пустой) графа прибавим к глобальному ответу предподсчитанное количество клик, которые можно добавить к (в том числе и пустых). Асимптотика: .
Итоговая сложность:
Задача о нахождении кратчайшего расстояния между двумя вершинами в графе
Еще одна задача, решаемая Meet-in-the-middle  —  это нахождение кратчайшего расстояния между двумя вершинами, зная начальное состояние, конечное состояние и то, что длина оптимального пути не превышает .
Стандартным подходом для решения данной задачи, является применение алгоритма обхода в ширину. Пусть из каждого состояния у нас есть  переходов, тогда бы мы сгенерировали  состояний. Асимптотика данного решения составила бы . Meet-in-the-middle помогает снизить асимптотику до . 
Алгоритм решения
1. Сгенерируем BFS-ом все состояния, доступные из начала и конца за или меньше ходов.
2. Найдем состояния, которые достижимы из начала и из конца.
3. Найдем среди них наилучшее по сумме длин путей.
Таким образом, BFS-ом из двух концов, мы сгенерируем максимум  состояний.

