Теорема о декомпозиционном барьере — различия между версиями
Shersh (обсуждение | вклад) м (→См. также) |
Shersh (обсуждение | вклад) м (→Источники информации) |
||
| Строка 21: | Строка 21: | ||
==Источники информации== | ==Источники информации== | ||
| − | [https://youtu.be/PMqO0UCezqo?t=1h39m57s Андрей Станкевич: Лекториум, дополнительные главы алгоритмов, лекция 11] | + | * [https://youtu.be/PMqO0UCezqo?t=1h39m57s Андрей Станкевич: Лекториум, дополнительные главы алгоритмов, лекция 11] |
[[Категория: Алгоритмы и структуры данных]] | [[Категория: Алгоритмы и структуры данных]] | ||
[[Категория: Задача о максимальном потоке ]] | [[Категория: Задача о максимальном потоке ]] | ||
Версия 17:05, 5 января 2017
| Теорема (о декомпозиционном барьере): |
Существуют положительные вещественные числа и , такие что для любых натуральных и , удовлетворяющих неравенствам , существует сеть с вершинами и ребрами, такая что для любого максимального потока в , любая его остаточная декомпозиция должна содержать слагаемых (т.е. путей или циклов), причем каждый из путей (циклов) в декомпозиции должен иметь длину . |
| Доказательство: |
|
Возьмем и . Константа выбрана таким образом, чтобы между и было ребер, а константа выбрана такой, потому что в рассматриваемой сети нельзя провести большее количество ребер. Чтобы получить искомую сеть, строится сеть, изображенная на рисунке, после чего добавляется нужное количество ребер из в . Пропускные способности ребер из в равны , остальных — (или просто достаточно большое число, например, ).
Теперь докажем саму теорему:
|
Следствие: Алгоритмы, которые могут выписать декомпозицию потока вместе с поиском самого потока (Алгоритм Диница, Алгоритм Эдмондса-Карпа, Алгоритм Форда-Фалкерсона и подобные) не могут работать быстрее чем за , так как декомпозиция может быть сама по себе большой.
См. также
- Алгоритм Форда-Фалкерсона
- Алгоритм Эдмондса-Карпа
- Алгоритм Диница
- Алгоритм поиска блокирующего потока в ациклической сети