Быстрый поиск наибольшей возрастающей подпоследовательности — различия между версиями
(→Деление на блоки: Подраздел написал) |
м (→Оптимизация до O(n\operatorname{log}\operatorname{log}k)) |
||
| Строка 196: | Строка 196: | ||
|Смещение ||style="background:#FF8080"|2||style="background:#FF8080"|4||style="background:#FF8080"|5||style="background:#FF8080"|1||style="background:#FF8080"|3||style="background:#80FF80"|1||style="background:#80FF80"|2||style="background:#80FF80"|5||style="background:#80FF80"|4||style="background:#80FF80"|3||style="background:#8080FF"|1||style="background:#8080FF"|2 | |Смещение ||style="background:#FF8080"|2||style="background:#FF8080"|4||style="background:#FF8080"|5||style="background:#FF8080"|1||style="background:#FF8080"|3||style="background:#80FF80"|1||style="background:#80FF80"|2||style="background:#80FF80"|5||style="background:#80FF80"|4||style="background:#80FF80"|3||style="background:#8080FF"|1||style="background:#8080FF"|2 | ||
|} | |} | ||
| + | === Обработка блока === | ||
| + | ==== Основная идея ==== | ||
| + | ==== Пример ==== | ||
| + | ==== Псевдокод ==== | ||
Версия 23:55, 6 января 2017
| Задача: |
| Дана перестановка . Требуется найти НВП за , где — длина НВП. |
Содержание
Алгоритм
Нахождение длины НВП
Основная идея
Пусть — входная перестановка.
Для каждой длины предполагаемой НВП находим наименьший элемент, что может быть последним в возрастающей подпоследовательности длины , запишем их в массив .
Если обрабатываемый элемент больше последнего элемента какой-нибудь возрастающей последовательности, он может ее увеличить.
Будем последовательно обрабатывать элементы :
- Если больше , значит с ним можно сделать максимальную, из уже рассмотренных, возрастающую подпоследовательность. Записываем его в конец
- Иначе заменяет наименьший лучший элемент, из тех, что больше .
Следует отметить, что полученный массив также образует возрастающую последовательность, где мы должны выполнять операции , соответственно целесообразно использовать приоритетную очередь, реализованную через Дерево ван Эмде Боаса. Таким образом получаем амортизированного времени на одну операцию.
Пример
Типы операций:
Последовательность:
| 9 | 3 | 10 | 4 | 8 | 1 | 2 | 12 | 6 | 5 | 7 | 11 |
Состояние очереди при каждом добавлении:
| 9 | 9 | ||||
| 3 | 3 | ||||
| 3 | 10 | 10 | |||
| 3 | 4 | 4 | |||
| 3 | 4 | 8 | 8 | ||
| 1 | 4 | 8 | 1 | ||
| 1 | 2 | 8 | 2 | ||
| 1 | 2 | 8 | 12 | 12 | |
| 1 | 2 | 6 | 12 | 6 | |
| 1 | 2 | 5 | 12 | 5 | |
| 1 | 2 | 5 | 7 | 7 | |
| 1 | 2 | 5 | 7 | 11 | 11 |
Псевдокод
int LIS(vector<int> ) PriorityQueue B // рабочая приоритетная очередь int k = 0 // длина НВП int n = .size for i = 1 to n x = [i] // в любом случае добавляем в очередь очередной элемент // устаревшие будем удалять B.insert(x) if B.next(x) // добавленный элемент — не максимальный // удаляем предыдущее значение — заменяем следующий B.delete(B.next(x)) else // добавленный элемент - максимальный // предыдущие значения не трогаем, очередь увеличилась k = k + 1 return k
Расширение алгоритма до нахождения НВП
Основная идея
Будем запоминать пары: для каждого элемента записываем его "предшественника".
Тогда, выбрав какой-нибудь лучший элемент для максимальной длины, мы можем легко восстановить НВП .
Общий вид алгоритма
| 9 | 9 | ||||
| 3 | 3 | ||||
| 3 | 10 | 10 | |||
| 3 | 4 | 4 | |||
| 3 | 4 | 8 | 8 | ||
| 1 | 4 | 8 | 1 | ||
| 1 | 2 | 8 | 2 | ||
| 1 | 2 | 8 | 12 | 12 | |
| 1 | 2 | 6 | 12 | 6 | |
| 1 | 2 | 5 | 12 | 5 | |
| 1 | 2 | 5 | 7 | 7 | |
| 1 | 2 | 5 | 7 | 11 | 11 |
| predecessor | |||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
| 1 | 3 | 2 | 2 | 5 | 4 | 3 | 7 | 8 | |||
Псевдокод
vector<int> LIS(vector<int> ) PriorityQueue B int k = 0 int n = .size vector<int> predecessor(n) // резервируем позиций for i = 1 to n x = [i] B.insert(x) predecessor[x] = B.prev(x) if B.next(x) B.delete(B.next(x)) else k = k + 1 // по цепочке от последнего элемента // восстанавливаем НВП vector<int> result int cur = B.max() result += [cur] while predecessor[cur] result += [predecessor[cur]] cur = predecessor[cur] return result
Оптимизация до
Основная идея
Чтобы Дерево ван Эмде Боаса выполняло операции за , необходимо алфавит обрабатываемых значений уменьшить до .
Предположим, мы знаем такое приближение . Если мы разобьем всю последовательность на блоки из элементов и нам удастся обрабатывать каждый как перестановку из элементов, то мы получим асимптотическое время , а т.к. , то . (Мы будем обрабатывать блоки последовательно, т.е. с предыдущего блока у нас может остаться значений в очереди, которые дополняются значениями очередного блока - получаем верхнее ограничение в обрабатываемых возможных значений.)
Описанный здесь алгоритм подбора и получение асимптотической оценки в других подразделах рассмотрено не будет, т.к. в основном это доказательство, сложного для понимания/реализации ничего нет
Рассмотрим последовательность , где , - некоторое значение, меньшее .
Будем последовательно для элементов этой последовательности запускать алгоритм. Если условие перестает выполняться, прерываем выполнение. Таким образом, время работы для каждого будет . Найдется такой , который окажется больше , и алгоритм успешно завершится.
Общее время работы - . Заметим, что , т.к. в противном случае , что противоречит тому, что - первый из тех, что больше . Следовательно, .
Получаем время работы
Деление на блоки
Основная идея
Разделим исходную перестановку на блоки .
Получим сортированные варианты этих блоков . При лобовой цифровой сортировке мы получим . Дополним каждый элемент номером блока, в котором он находится и смещением в этом блоке. Теперь, рассматривая номер блока как старший разряд, элемент как младший разряд, можно сортировать цифровой сортировкой за линейное время .
Пример
Пусть . Исходно:
| Блок | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 3 | 3 |
| 9 | 3 | 10 | 4 | 8 | 1 | 2 | 12 | 6 | 5 | 7 | 11 | |
| Смещение | 1 | 2 | 3 | 4 | 5 | 1 | 2 | 3 | 4 | 5 | 1 | 2 |
После сортировки:
| Блок | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 3 | 3 |
| 3 | 4 | 8 | 9 | 10 | 1 | 2 | 5 | 6 | 12 | 7 | 11 | |
| Смещение | 2 | 4 | 5 | 1 | 3 | 1 | 2 | 5 | 4 | 3 | 1 | 2 |



