Быстрый поиск наибольшей возрастающей подпоследовательности — различия между версиями
(→Пример: Подподраздел предварительно написан) |
(→Деление на блоки: Исправлена логическая ошибка) |
||
| Строка 179: | Строка 179: | ||
Получим сортированные варианты этих блоков <tex>C_j^S</tex>. При лобовой {{Acronym|цифровой|radix}} сортировке мы получим <tex>O(\frac{n}{m}n)</tex>. Дополним каждый элемент <tex>\pi</tex> номером блока, в котором он находится и смещением в этом блоке. Теперь, {{Acronym|рассматривая номер блока как старший разряд, элемент как младший разряд|по смещению внутри блока не сортируем}}, можно сортировать цифровой сортировкой за линейное время <tex>O(n)</tex>. | Получим сортированные варианты этих блоков <tex>C_j^S</tex>. При лобовой {{Acronym|цифровой|radix}} сортировке мы получим <tex>O(\frac{n}{m}n)</tex>. Дополним каждый элемент <tex>\pi</tex> номером блока, в котором он находится и смещением в этом блоке. Теперь, {{Acronym|рассматривая номер блока как старший разряд, элемент как младший разряд|по смещению внутри блока не сортируем}}, можно сортировать цифровой сортировкой за линейное время <tex>O(n)</tex>. | ||
| + | |||
| + | Перестановка смещений, образованная в сортированном блоке есть не что иное, как обратная перестановка перестановки, элементы которой соотносятся между собой как элементы исходного блока. Находим обратную перестановку к найденной, назовем ее <tex>\xi</tex> | ||
==== Пример ==== | ==== Пример ==== | ||
Пусть <tex>m = 5</tex>. Исходно: | Пусть <tex>m = 5</tex>. Исходно: | ||
| Строка 196: | Строка 198: | ||
|Смещение ||style="background:#FF8080"|2||style="background:#FF8080"|4||style="background:#FF8080"|5||style="background:#FF8080"|1||style="background:#FF8080"|3||style="background:#80FF80"|1||style="background:#80FF80"|2||style="background:#80FF80"|5||style="background:#80FF80"|4||style="background:#80FF80"|3||style="background:#8080FF"|1||style="background:#8080FF"|2 | |Смещение ||style="background:#FF8080"|2||style="background:#FF8080"|4||style="background:#FF8080"|5||style="background:#FF8080"|1||style="background:#FF8080"|3||style="background:#80FF80"|1||style="background:#80FF80"|2||style="background:#80FF80"|5||style="background:#80FF80"|4||style="background:#80FF80"|3||style="background:#8080FF"|1||style="background:#8080FF"|2 | ||
|} | |} | ||
| + | Обратные перестановки (<tex>\xi</tex>): | ||
| + | {| class="wikitable" style="center" style="background:#FFCC80" | ||
| + | ! colspan="5"|1 || colspan="5"|2 || colspan="3"|3 | ||
| + | |-align="center" | ||
| + | | style="background:#FFD0D0"|4||style="background:#FFD0D0"|1||style="background:#FFD0D0"|5||style="background:#FFD0D0"|2||style="background:#FFD0D0"|3 | ||
| + | | style="background:#D0FFD0"|1||style="background:#D0FFD0"|2||style="background:#D0FFD0"|5||style="background:#D0FFD0"|4||style="background:#D0FFD0"|3 | ||
| + | | style="background:#D0D0FF"|1||style="background:#D0D0FF"|2 | ||
| + | |} | ||
| + | |||
=== Обработка блока === | === Обработка блока === | ||
==== Основная идея ==== | ==== Основная идея ==== | ||
Версия 17:55, 7 января 2017
| Задача: |
| Дана перестановка . Требуется найти НВП за , где — длина НВП. |
Содержание
Алгоритм
Нахождение длины НВП
Основная идея
Пусть — входная перестановка.
Для каждой длины предполагаемой НВП находим наименьший элемент, что может быть последним в возрастающей подпоследовательности длины , запишем их в массив .
Если обрабатываемый элемент больше последнего элемента какой-нибудь возрастающей последовательности, он может ее увеличить.
Будем последовательно обрабатывать элементы :
- Если больше , значит с ним можно сделать максимальную, из уже рассмотренных, возрастающую подпоследовательность. Записываем его в конец
- Иначе заменяет наименьший лучший элемент, из тех, что больше .
Следует отметить, что полученный массив также образует возрастающую последовательность, где мы должны выполнять операции , соответственно целесообразно использовать приоритетную очередь, реализованную через Дерево ван Эмде Боаса. Таким образом получаем амортизированного времени на одну операцию.
Пример
Типы операций:
Последовательность:
| 9 | 3 | 10 | 4 | 8 | 1 | 2 | 12 | 6 | 5 | 7 | 11 |
Состояние очереди при каждом добавлении:
| 9 | 9 | ||||
| 3 | 3 | ||||
| 3 | 10 | 10 | |||
| 3 | 4 | 4 | |||
| 3 | 4 | 8 | 8 | ||
| 1 | 4 | 8 | 1 | ||
| 1 | 2 | 8 | 2 | ||
| 1 | 2 | 8 | 12 | 12 | |
| 1 | 2 | 6 | 12 | 6 | |
| 1 | 2 | 5 | 12 | 5 | |
| 1 | 2 | 5 | 7 | 7 | |
| 1 | 2 | 5 | 7 | 11 | 11 |
Псевдокод
int LIS(vector<int> ) PriorityQueue B // рабочая приоритетная очередь int k = 0 // длина НВП int n = .size for i = 1 to n x = [i] // в любом случае добавляем в очередь очередной элемент // устаревшие будем удалять B.insert(x) if B.next(x) // добавленный элемент — не максимальный // удаляем предыдущее значение — заменяем следующий B.delete(B.next(x)) else // добавленный элемент - максимальный // предыдущие значения не трогаем, очередь увеличилась k = k + 1 return k
Расширение алгоритма до нахождения НВП
Основная идея
Будем запоминать пары: для каждого элемента записываем его "предшественника".
Тогда, выбрав какой-нибудь лучший элемент для максимальной длины, мы можем легко восстановить НВП .
Общий вид алгоритма
| 9 | 9 | ||||
| 3 | 3 | ||||
| 3 | 10 | 10 | |||
| 3 | 4 | 4 | |||
| 3 | 4 | 8 | 8 | ||
| 1 | 4 | 8 | 1 | ||
| 1 | 2 | 8 | 2 | ||
| 1 | 2 | 8 | 12 | 12 | |
| 1 | 2 | 6 | 12 | 6 | |
| 1 | 2 | 5 | 12 | 5 | |
| 1 | 2 | 5 | 7 | 7 | |
| 1 | 2 | 5 | 7 | 11 | 11 |
| predecessor | |||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
| 1 | 3 | 2 | 2 | 5 | 4 | 3 | 7 | 8 | |||
Псевдокод
vector<int> LIS(vector<int> ) PriorityQueue B int k = 0 int n = .size vector<int> predecessor(n) // резервируем позиций for i = 1 to n x = [i] B.insert(x) predecessor[x] = B.prev(x) if B.next(x) B.delete(B.next(x)) else k = k + 1 // по цепочке от последнего элемента // восстанавливаем НВП vector<int> result int cur = B.max() result += [cur] while predecessor[cur] result += [predecessor[cur]] cur = predecessor[cur] return result
Оптимизация до
Основная идея
Чтобы Дерево ван Эмде Боаса выполняло операции за , необходимо алфавит обрабатываемых значений уменьшить до .
Предположим, мы знаем такое приближение . Если мы разобьем всю последовательность на блоки из элементов и нам удастся обрабатывать каждый как перестановку из элементов, то мы получим асимптотическое время , а т.к. , то . (Мы будем обрабатывать блоки последовательно, т.е. с предыдущего блока у нас может остаться значений в очереди, которые дополняются значениями очередного блока - получаем верхнее ограничение в обрабатываемых возможных значений.)
Описанный здесь алгоритм подбора и получение асимптотической оценки в других подразделах рассмотрено не будет, т.к. в основном это доказательство, сложного для понимания/реализации ничего нет
Рассмотрим последовательность , где , - некоторое значение, меньшее .
Будем последовательно для элементов этой последовательности запускать алгоритм. Если условие перестает выполняться, прерываем выполнение. Таким образом, время работы для каждого будет . Найдется такой , который окажется больше , и алгоритм успешно завершится.
Общее время работы - . Заметим, что , т.к. в противном случае , что противоречит тому, что - первый из тех, что больше . Следовательно, .
Получаем время работы
Деление на блоки
Основная идея
Разделим исходную перестановку на блоки .
Получим сортированные варианты этих блоков . При лобовой цифровой сортировке мы получим . Дополним каждый элемент номером блока, в котором он находится и смещением в этом блоке. Теперь, рассматривая номер блока как старший разряд, элемент как младший разряд, можно сортировать цифровой сортировкой за линейное время .
Перестановка смещений, образованная в сортированном блоке есть не что иное, как обратная перестановка перестановки, элементы которой соотносятся между собой как элементы исходного блока. Находим обратную перестановку к найденной, назовем ее
Пример
Пусть . Исходно:
| Блок | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 3 | 3 |
| 9 | 3 | 10 | 4 | 8 | 1 | 2 | 12 | 6 | 5 | 7 | 11 | |
| Смещение | 1 | 2 | 3 | 4 | 5 | 1 | 2 | 3 | 4 | 5 | 1 | 2 |
После сортировки:
| Блок | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 3 | 3 |
| 3 | 4 | 8 | 9 | 10 | 1 | 2 | 5 | 6 | 12 | 7 | 11 | |
| Смещение | 2 | 4 | 5 | 1 | 3 | 1 | 2 | 5 | 4 | 3 | 1 | 2 |
Обратные перестановки ():
| 1 | 2 | 3 | ||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 4 | 1 | 5 | 2 | 3 | 1 | 2 | 5 | 4 | 3 | 1 | 2 | |
Обработка блока
Основная идея
- Достаем из очереди ключи и конвертируем их в элементы .
- Классический merge только что полученных элементов с элементами нового блока, но с модификацией: генерируются 2 массива - индексы элементов исходных массивов в новом.
- На массив индексов, относящиеся к новому блоку, действует перестановка смещений сортированного варианта этого блока. Таким образом мы добиваемся эквиваленции отношений ключей к отношениям элементов в очереди и элементов в блоке, а ключи находятся в диапазоне .
- Первый массив индексов, который соответствует элементам, ранее находящимся в очереди, вновь кладутся в очередь (обычными -ами). Второй массив обрабатывается описанным выше алгоритмом .
Визуализация
Помеченные зеленым - условные данные. Остальное - условные операции. Например значит взять элементы из массива c индексами из . - здесь обозначает результат операции merge.
Для первого блока содержательным является лишь ветка, начинающаяся с , что не противоречит представленной схеме.
Пример
Первый блок
|
| ||||||||||||||||||||||||||||||||
| Ключи сортированного блока | ||||
|---|---|---|---|---|
| 2 | 4 | 5 | 1 | 3 |
Пропускаем их через :
| 2 | 2 | ||
| 2 | 4 | 4 | |
| 2 | 4 | 5 | 5 |
| 1 | 4 | 5 | 1 |
| 1 | 3 | 5 | 3 |
Результат работы
Второй блок
|
Псевдокод |
||||||||||||||||||||||||||||||||




