Задача об оптимальном префиксном коде с сохранением порядка. Монотонность точки разреза — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
м (Новая страница: «печальная статья. Определение: Оптимальный префиксный код с сохранением порядка(англ. ''…»)
 
м
Строка 2: Строка 2:
 
Определение: [[Оптимальный префиксный код]] с сохранением порядка(англ. ''order-preserving code'', ''alphabetic code'')
 
Определение: [[Оптимальный префиксный код]] с сохранением порядка(англ. ''order-preserving code'', ''alphabetic code'')
 
Пусть у нас есть алфавит <tex> \Sigma </tex>. Каждому символу <tex>c_i </tex> сопоставим его код <tex> p_i </tex>. Кодирование называется оптимальным префиксным с сохранением порядка, если:
 
Пусть у нас есть алфавит <tex> \Sigma </tex>. Каждому символу <tex>c_i </tex> сопоставим его код <tex> p_i </tex>. Кодирование называется оптимальным префиксным с сохранением порядка, если:
# Условие порядка - <tex> \forall i, j : c_i < c_j \iff p_i < p_j </tex>. То есть, если символ c_i лексикографически меньше символа c_j, его код также будет [[лексикографически | лексикографический порядок]] меньше, и наоборот.
+
# Условие порядка - <tex> \forall i, j : c_i < c_j \iff p_i < p_j </tex>. То есть, если символ c_i лексикографически меньше символа c_j, его код также будет [[лексикографический порядок | лексикографически]] меньше, и наоборот.
 
# Условие оптимальности - <tex> \sum\limits_{i = 1}^{|\Sigma|} f_i \cdot |p_i| </tex> - минимально, где f_i - количество(или вероятность) встретить символ c_i в тексте, а |p_i| - длина его кода.
 
# Условие оптимальности - <tex> \sum\limits_{i = 1}^{|\Sigma|} f_i \cdot |p_i| </tex> - минимально, где f_i - количество(или вероятность) встретить символ c_i в тексте, а |p_i| - длина его кода.

Версия 04:39, 16 декабря 2010

печальная статья. Определение: Оптимальный префиксный код с сохранением порядка(англ. order-preserving code, alphabetic code) Пусть у нас есть алфавит [math] \Sigma [/math]. Каждому символу [math]c_i [/math] сопоставим его код [math] p_i [/math]. Кодирование называется оптимальным префиксным с сохранением порядка, если:

  1. Условие порядка - [math] \forall i, j : c_i \lt c_j \iff p_i \lt p_j [/math]. То есть, если символ c_i лексикографически меньше символа c_j, его код также будет лексикографически меньше, и наоборот.
  2. Условие оптимальности - [math] \sum\limits_{i = 1}^{|\Sigma|} f_i \cdot |p_i| [/math] - минимально, где f_i - количество(или вероятность) встретить символ c_i в тексте, а |p_i| - длина его кода.