Алгоритм Кока-Янгера-Касами, модификация для произвольной грамматики — различия между версиями
Строка 1: | Строка 1: | ||
Пусть дана [[Контекстно-свободные грамматики, вывод, лево- и правосторонний вывод, дерево разбора|контекстно-свободная грамматика]] грамматика <tex>\Gamma</tex> и слово <tex>w \in \Sigma^{*}</tex>. Требуется выяснить, выводится ли это слово в данной грамматике. | Пусть дана [[Контекстно-свободные грамматики, вывод, лево- и правосторонний вывод, дерево разбора|контекстно-свободная грамматика]] грамматика <tex>\Gamma</tex> и слово <tex>w \in \Sigma^{*}</tex>. Требуется выяснить, выводится ли это слово в данной грамматике. | ||
− | [[Алгоритм_Кока-Янгера-Касами_разбора_грамматики_в_НФХ|Базовая версия]] данного алгоритма работает только для грамматик в [[нормальная форма Хомского|нормальной форме Хомского]]. Модифицируем алгоритм для работы на произвольных контекстно-свободных грамматиках | + | [[Алгоритм_Кока-Янгера-Касами_разбора_грамматики_в_НФХ|Базовая версия]] данного алгоритма работает только для грамматик в [[нормальная форма Хомского|нормальной форме Хомского]]. Модифицируем алгоритм для работы на произвольных контекстно-свободных грамматиках. |
== Алгоритм для произвольной грамматики == | == Алгоритм для произвольной грамматики == | ||
− | |||
Будем решать задачу динамическим программированием. Введём динамику <tex>a\left[A,i,j\right] = \left[A \Rightarrow^{*} w[i..j-1]\right]</tex>, аналогично [[Алгоритм_Кока-Янгера-Касами_разбора_грамматики_в_НФХ|базовой версии]] алгоритма. | Будем решать задачу динамическим программированием. Введём динамику <tex>a\left[A,i,j\right] = \left[A \Rightarrow^{*} w[i..j-1]\right]</tex>, аналогично [[Алгоритм_Кока-Янгера-Касами_разбора_грамматики_в_НФХ|базовой версии]] алгоритма. | ||
− | Также введём вспомогательный | + | Также введём вспомогательный четырехмерный массив <tex>h\left[A \rightarrow \alpha, i, j, k\right] = true</tex> тогда и только тогда, когда из префикса длины <tex>k</tex> правой части данного правила можно вывести <tex>w\left[i..j-1\right]</tex>. |
* '''База динамики''': | * '''База динамики''': | ||
Строка 25: | Строка 24: | ||
== Оценка сложности == | == Оценка сложности == | ||
+ | Обозначим <tex>M = \max\limits_{A \rightarrow \alpha}\left|\alpha\right|</tex> — максимальную длину правой части правила. | ||
+ | |||
Расчёт вспомогательной динамики занимает <tex>O \left( n^3 \cdot |\Gamma| \cdot M \right)</tex> времени, основной динамики — <tex>O \left( n^2 \cdot |\Gamma| \right)</tex>. Итоговая временная сложность алгоритма равна <tex>O \left( n^3 \cdot |\Gamma| \cdot M \right)</tex>. Алгоритму требуется <tex>O(n^2 \cdot |\Gamma| \cdot M)</tex> памяти. | Расчёт вспомогательной динамики занимает <tex>O \left( n^3 \cdot |\Gamma| \cdot M \right)</tex> времени, основной динамики — <tex>O \left( n^2 \cdot |\Gamma| \right)</tex>. Итоговая временная сложность алгоритма равна <tex>O \left( n^3 \cdot |\Gamma| \cdot M \right)</tex>. Алгоритму требуется <tex>O(n^2 \cdot |\Gamma| \cdot M)</tex> памяти. | ||
[[Категория: Теория формальных языков]] | [[Категория: Теория формальных языков]] | ||
[[Категория: Контекстно-свободные грамматики]] | [[Категория: Контекстно-свободные грамматики]] |
Версия 16:34, 17 января 2017
Пусть дана контекстно-свободная грамматика грамматика и слово . Требуется выяснить, выводится ли это слово в данной грамматике.
Базовая версия данного алгоритма работает только для грамматик в нормальной форме Хомского. Модифицируем алгоритм для работы на произвольных контекстно-свободных грамматиках.
Алгоритм для произвольной грамматики
Будем решать задачу динамическим программированием. Введём динамику базовой версии алгоритма.
, аналогичноТакже введём вспомогательный четырехмерный массив
тогда и только тогда, когда из префикса длины правой части данного правила можно вывести .- База динамики:
, если в грамматике присутствует правило , иначе ;
, если в грамматике присутствует правило , иначе ;
— -вывод для -префиксов правил.
- Переход: Пусть для всех подстрок динамики уже вычислены. Сначала вычислим вспомогательную динамику: . Это вычисление может обратится к , но на результат это не повлияет, так так в данный момент .
Главная динамика выражается так:
.- Завершение: После окончания работы ответ содержится в ячейке , где .
Оценка сложности
Обозначим
— максимальную длину правой части правила.Расчёт вспомогательной динамики занимает
времени, основной динамики — . Итоговая временная сложность алгоритма равна . Алгоритму требуется памяти.