Корневая декомпозиция с операциями: get, insert, erase — различия между версиями
Josdas (обсуждение | вклад) |
Josdas (обсуждение | вклад) |
||
Строка 5: | Строка 5: | ||
Пусть дан массив <math>A</math> размерности <math>n</math> и <math>m</math> запросов вида: посчитать сумму чисел на отрезке, вставить элемент в любую позицию, удалить любой элемент. | Пусть дан массив <math>A</math> размерности <math>n</math> и <math>m</math> запросов вида: посчитать сумму чисел на отрезке, вставить элемент в любую позицию, удалить любой элемент. | ||
− | Будем поддерживать разбиение массива <math>A</math> на блоки. Введем операцию split, которая позволяет изменить структуру и разрезать один блок на два других. Такая операция увеличит количество блоков на <math>O(1)</math>. | + | Будем поддерживать разбиение массива <math>A</math> на блоки. Введем операцию <math>split</math>, которая позволяет изменить структуру и разрезать один блок на два других. Такая операция увеличит количество блоков на <math>O(1)</math>. Введем вспомогательную функцию <math>rebuild</math>. Данная функция позволяет вновь перестроить структуру. |
− | Реализуем две основные операции split и rebuild. Остальные операции выразим через них. | + | Реализуем две основные операции <math>split</math> и <math>rebuild</math>. Остальные операции выразим через них. |
− | Пусть время работы операции split | + | Пусть время работы операции <math>split</math> <math>O(cnt + len)</math> и операции <math>rebuild</math> <math>O(|A| + cnt)</math>, где <math>len</math> - длина блоков, <math>cnt</math> - количество блоков. |
− | Выберем <math>len = \sqrt n</math>, тогда после операции build будет <math>cnt = O(\sqrt n)</math> блоков, где <math>n</math> текущие количество элементов в структуре. Заметим, что любая операция добавляет не более, чем <math>4</math> новых блоков. После каждых <math>k</math> операций вызовем rebuild. | + | Выберем <math>len = \sqrt n</math>, тогда после операции <math>build</math> будет <math>cnt = O(\sqrt n)</math> блоков, где <math>n</math> текущие количество элементов в структуре. Заметим, что любая операция добавляет не более, чем <math>4</math> новых блоков. После каждых <math>k</math> операций вызовем <math>rebuild</math>. |
− | Асимптотика: <math>O((m / k) \cdot (n + 4 \cdot k) + m \cdot (len + 4 \cdot k))</math>. | + | Асимптотика: <math>O((m / k) \cdot (n + 4 \cdot k) + m \cdot (len + 4 \cdot k))</math>. |
Найдем минимум функции, который достигается при <math>k = O(\sqrt n)</math>. | Найдем минимум функции, который достигается при <math>k = O(\sqrt n)</math>. | ||
Строка 20: | Строка 20: | ||
== Построение == | == Построение == | ||
Пусть дан массив <math>A</math> размерности <math>n</math>. Cделаем следующие действия: | Пусть дан массив <math>A</math> размерности <math>n</math>. Cделаем следующие действия: | ||
− | * разделим массив <math>A</math> на блоки длины <math>len = \lfloor \sqrt{n} \rfloor</math> | + | * разделим массив <math>A</math> на блоки длины <math>len = \lfloor \sqrt{n} \rfloor</math> |
− | * в каждом блоке заранее посчитаем необходимую операцию | + | * в каждом блоке заранее посчитаем необходимую операцию |
− | * для каждого блока сохраним индекс самого левого и самого правого элемента в массивах <math>L, R</math> | + | * для каждого блока сохраним индекс самого левого и самого правого элемента в массивах <math>L, R</math> |
− | * результаты подсчета запишем в массив <math>B</math> размерности <math>cnt</math>, где <math>cnt = \left\lceil \dfrac{n}{len} \right\rceil</math> {{---}} количество блоков | + | * результаты подсчета запишем в массив <math>B</math> размерности <math>cnt</math>, где <math>cnt = \left\lceil \dfrac{n}{len} \right\rceil</math> {{---}} количество блоков |
− | * заведем массив <math>T</math>, в котором храним актуальный порядок блоков. <math>T = [0, 1, ... cnt - 1]</math> соответствует порядку <math>B_0, B_1 , … , B_{cnt-1}</math> | + | * заведем массив <math>T</math>, в котором храним актуальный порядок блоков. <math>T = [0, 1, ... cnt - 1]</math> соответствует порядку <math>B_0, B_1 , … , B_{cnt-1}</math> |
Пример реализации построения для операции <math> + </math>: | Пример реализации построения для операции <math> + </math>: | ||
Строка 41: | Строка 41: | ||
== Операций split == | == Операций split == | ||
− | Данная операций нужна для реализации операций: | + | Данная операций нужна для реализации операций: <math>insert</math>, <math>erase</math>, <math>get</math>. Она позволяет разделить один блок на два других с целью создания разреза, который необходим в других операциях. Индекс <math>i</math> называется разрезом, если не существует такого актуального блока, которому принадлежит индекс <math>i</math> и <math>i + 1</math> одновременно. |
− | Пусть получен запрос на выполнение операции для индекса <math>x</math>. Этот индекс входит ровно в один блок массива <math>B</math>, пусть индекс этого блока – <math>ind</math>. После операции split этот блок поделится на <math>[L[ind], x]</math> и <math>[x + 1, R[ind]]</math>, если <math>x</math> был в середине блока, иначе <math>x</math> уже является разрезом и никакая операций не требуется. Как мы видим после операции у нас появилось максимум два новых блока. | + | Пусть получен запрос на выполнение операции для индекса <math>x</math>. Этот индекс входит ровно в один блок массива <math>B</math>, пусть индекс этого блока – <math>ind</math>. После операции <math>split</math> этот блок поделится на <math>[L[ind], x]</math> и <math>[x + 1, R[ind]]</math>, если <math>x</math> был в середине блока, иначе <math>x</math> уже является разрезом и никакая операций не требуется. Как мы видим после операции у нас появилось максимум два новых блока. |
+ | |||
+ | Для удобства реализации в массивы <math>B, L, R</math> можно только дописывать новую информацию в конце, что соответствует созданию новых блоков. | ||
− | |||
Блок считается актуальным, если он присутствует в массиве <math>T</math>. | Блок считается актуальным, если он присутствует в массиве <math>T</math>. | ||
Строка 56: | Строка 57: | ||
<code> | <code> | ||
− | '''int''' createNewBlock('''int''' l, '''int''' r): | + | '''int''' createNewBlock('''int''' l, '''int''' r): // Вспомогательная функция. Позволяет создать блок с <math>l</math> по <math>r</math>. |
result = 0 | result = 0 | ||
'''for''' i = l ... r | '''for''' i = l ... r | ||
Строка 87: | Строка 88: | ||
== Операций rebuild == | == Операций rebuild == | ||
− | Вторая необходимая операция – это rebuild. Заметим, что после операций split количество блоков увеличивалось, а работа всех функций зависит от этого числа. Для того чтоб <math>cnt</math> не стало слишком большим будем полностью перестраивать структуру изменяя <math>cnt</math> на базовое значение равное <math>cnt = \left\lceil \dfrac{n}{len} \right\rceil</math>. | + | Вторая необходимая операция – это <math>rebuild</math>. Заметим, что после операций <math>split</math> количество блоков увеличивалось, а работа всех функций зависит от этого числа. Для того чтоб <math>cnt</math> не стало слишком большим будем полностью перестраивать структуру изменяя <math>cnt</math> на базовое значение равное <math>cnt = \left\lceil \dfrac{n}{len} \right\rceil</math>. |
− | Будем восстанавливать из актуальных блоков массив <math>A</math>. Потом очищать все текущие блоки, а затем вызывать операцию build для построение новой структуры. | + | Будем восстанавливать из актуальных блоков массив <math>A</math>. Потом очищать все текущие блоки, а затем вызывать операцию <math>build</math> для построение новой структуры. |
Строка 95: | Строка 96: | ||
* Восстановим актуальную версию массива <math>A</math> | * Восстановим актуальную версию массива <math>A</math> | ||
* Очистим массивы <math>B, L, R</math>, удалив все текущие блоки | * Очистим массивы <math>B, L, R</math>, удалив все текущие блоки | ||
− | * Вызовем операцию build | + | * Вызовем операцию <math>build</math> |
<code> | <code> | ||
Строка 113: | Строка 114: | ||
== Операций get == | == Операций get == | ||
− | Пусть получен запрос на выполнение операции на отрезке <math>[l, r]</math>. Будем | + | Пусть получен запрос на выполнение операции на отрезке <math>[l, r]</math>. Будем выполнять операции только на целых блоках, изменим нашу структуры так, чтобы граница отрезка никогда не попадал в середину блока. |
Перейдем к реализации: | Перейдем к реализации: | ||
− | * Разделим наши блоки при помощи операции split | + | * Разделим наши блоки при помощи операции <math>split</math> |
* Посчитаем операцию на целых блоках использую массив <math>B</math> | * Посчитаем операцию на целых блоках использую массив <math>B</math> | ||
Строка 133: | Строка 134: | ||
== Операция erase== | == Операция erase== | ||
− | Пусть получен запрос на выполнение операции удаления числа на позиции <math>x</math>. Аналогично операции get, мы не хотим удалять из середины блока. Когда <math>x</math> является единственным числом в блоке, мы можем просто удалить его из массива <math>T</math>. | + | Пусть получен запрос на выполнение операции удаления числа на позиции <math>x</math>. Аналогично операции <math>get</math>, мы не хотим удалять из середины блока. Когда <math>x</math> является единственным числом в блоке, мы можем просто удалить его из массива <math>T</math>. |
Перейдем к реализации: | Перейдем к реализации: | ||
− | * Разделим наши блоки при помощи операции split | + | * Разделим наши блоки при помощи операции <math>split</math> |
* Посчитаем операцию на целых блоках использую массив <math>B</math> | * Посчитаем операцию на целых блоках использую массив <math>B</math> | ||
Строка 151: | Строка 152: | ||
== Операция insert== | == Операция insert== | ||
− | Пусть получен запрос на выполнение вставить число <math>y</math> после числа с индексом <math>x</math>. Аналогично операции get, мы не хотим вставлять в середину блока. Когда нужно вставить на границу блока, то мы можем просто добавить число <math>x</math> в конец массива <math>A</math> и создать новый блок размер <math>1</math>, который ссылается на | + | Пусть получен запрос на выполнение вставить число <math>y</math> после числа с индексом <math>x</math>. Аналогично операции <math>get</math>, мы не хотим вставлять в середину блока. Когда нужно вставить на границу блока, то мы можем просто добавить число <math>x</math> в конец массива <math>A</math> и создать новый блок размер <math>1</math>, который ссылается на это число. |
Перейдем к реализации: | Перейдем к реализации: | ||
− | * Разделим наши блоки при помощи операции split | + | * Разделим наши блоки при помощи операции <math>split</math> |
* Добавим в конец <math>A</math> число <math>y</math> | * Добавим в конец <math>A</math> число <math>y</math> | ||
* Создадим новый блок и вставим в нужное место | * Создадим новый блок и вставим в нужное место |
Версия 17:22, 17 января 2017
Корневая декомпозиция — это подход к реализации ассоциативных операций (например, суммирование элементов, нахождение минимума/максимума и т.д.) над идущими подряд элементами некоторого множества размера
за . Так же есть поддержка операций удаления и вставки в произвольное место
Содержание
Идея
Пусть дан массив
размерности и запросов вида: посчитать сумму чисел на отрезке, вставить элемент в любую позицию, удалить любой элемент.Будем поддерживать разбиение массива
на блоки. Введем операцию , которая позволяет изменить структуру и разрезать один блок на два других. Такая операция увеличит количество блоков на . Введем вспомогательную функцию . Данная функция позволяет вновь перестроить структуру.Реализуем две основные операции
и . Остальные операции выразим через них. Пусть время работы операции и операции , где - длина блоков, - количество блоков.Выберем
, тогда после операции будет блоков, где текущие количество элементов в структуре. Заметим, что любая операция добавляет не более, чем новых блоков. После каждых операций вызовем .Асимптотика:
.Найдем минимум функции, который достигается при
.Итоговое время работы:
.Построение
Пусть дан массив
размерности . Cделаем следующие действия:- разделим массив на блоки длины
- в каждом блоке заранее посчитаем необходимую операцию
- для каждого блока сохраним индекс самого левого и самого правого элемента в массивах
- результаты подсчета запишем в массив размерности , где — количество блоков
- заведем массив , в котором храним актуальный порядок блоков. соответствует порядку
Пример реализации построения для операции
:
void build(): for i = 0 ... n - 1 T[i] = i L[i] = i * len R[i] = (i + 1) * len - 1 for i = 0 ... n - 1 B[i / len] = B[i / len] + A[i]
Построение, происходит за
времени.Операций split
Данная операций нужна для реализации операций:
, , . Она позволяет разделить один блок на два других с целью создания разреза, который необходим в других операциях. Индекс называется разрезом, если не существует такого актуального блока, которому принадлежит индекс и одновременно.Пусть получен запрос на выполнение операции для индекса
. Этот индекс входит ровно в один блок массива , пусть индекс этого блока – . После операции этот блок поделится на и , если был в середине блока, иначе уже является разрезом и никакая операций не требуется. Как мы видим после операции у нас появилось максимум два новых блока.Для удобства реализации в массивы
можно только дописывать новую информацию в конце, что соответствует созданию новых блоков.Блок считается актуальным, если он присутствует в массиве
.
Перейдем к реализации:
- Найдем в какой актуальный блок входит
- Проверим, что не является разрезом
- Создадим два новых блока. Для каждого из них посчитаем значение функции, а также зададим правильные значения в массивах и
- Удалим старый блок из перестановки и запишем туда два других.
int createNewBlock(int l, int r): // Вспомогательная функция. Позволяет создать блок спо . result = 0 for i = l ... r result = result + A[i] B.push_back(result) L.push_back(l) R.push_back(r) cnt++ return cnt - 1
int split(int x): ind = 0 for i = 0 ... |T| - 1 if L[i] <= x and x <= R[i] ind = i if L[ind] == x or R[ind] == x or x < 0 return 0 first = createNewBolock(L[ind], x) second = createNewBolock(x, R[ind]) T.erase(ind) // операций T.erase(x) удаляет элемент под номером x и сдвигает массив T. Время работыT.insert(ind. first) // операций T.insert(x, y) вставляет в массив T после индекса x значение y и сдвигает массив. Время работы T.insert(ind + 1, second) return ind
Асимптотика:
– поиск нужного блока, – подсчет функции. Итог: Так же заметим, что мы увеличили на .Операций rebuild
Вторая необходимая операция – это
. Заметим, что после операций количество блоков увеличивалось, а работа всех функций зависит от этого числа. Для того чтоб не стало слишком большим будем полностью перестраивать структуру изменяя на базовое значение равное .Будем восстанавливать из актуальных блоков массив
. Потом очищать все текущие блоки, а затем вызывать операцию для построение новой структуры.
Перейдем к реализации:
- Восстановим актуальную версию массива
- Очистим массивы , удалив все текущие блоки
- Вызовем операцию
void rebuild():
tempA // временная актуальная копия массива
for i = 0 ... |T| - 1
for j = L[i] ... R[i]
tempA.push_back(A[j])
A = tempA
B.clear()
L.clear()
R.clear()
build()
Асимптотика: заметим, оба циклам суммарно запишут ровно столько элементов, сколько их было в структуре.
Операций get
Пусть получен запрос на выполнение операции на отрезке
. Будем выполнять операции только на целых блоках, изменим нашу структуры так, чтобы граница отрезка никогда не попадал в середину блока.
Перейдем к реализации:
- Разделим наши блоки при помощи операции
- Посчитаем операцию на целых блоках использую массив
int get(int l, int r): result = 0 indexL = split(l – 1) indexR = split(r) – 1 for i = indexL ... indexR result = result + B[T[i]] return result
Асимптотика:
и . Итого:Операция erase
Пусть получен запрос на выполнение операции удаления числа на позиции
. Аналогично операции , мы не хотим удалять из середины блока. Когда является единственным числом в блоке, мы можем просто удалить его из массива .
Перейдем к реализации:
- Разделим наши блоки при помощи операции
- Посчитаем операцию на целых блоках использую массив
void erase(int x): split(x - 1) ind = split(x) T.erase(ind)
Асимптотика:
Операция insert
Пусть получен запрос на выполнение вставить число
после числа с индексом . Аналогично операции , мы не хотим вставлять в середину блока. Когда нужно вставить на границу блока, то мы можем просто добавить число в конец массива и создать новый блок размер , который ссылается на это число.Перейдем к реализации:
- Разделим наши блоки при помощи операции
- Добавим в конец число
- Создадим новый блок и вставим в нужное место
void insert(int x, int y): ind = split(x) A.push_back(y) indexNewBlock = createNewBlock(|A| - 1, |A| - 1) T.insert(ind, indexNewBlock)
Асимптотика: