Неразрешимость задачи вывода типов в языке с зависимыми типами — различия между версиями
(→Типизируемость в \lambda\Pi-исчислении) |
(→\lambda\Pi-исчисление: пояснил за well-formed.) |
||
Строка 12: | Строка 12: | ||
<tex> | <tex> | ||
\displaystyle | \displaystyle | ||
− | \frac{}{\left[ \right] \ | + | \frac{}{\left[ \right] \in \mathrm{WF}} \text{,} \vspace{3mm} \\ |
− | \frac{\Gamma \vdash T : s}{\Gamma\left[x : T\right] \ | + | \frac{\Gamma \vdash T : s}{\Gamma\left[x : T\right] \in \mathrm{WF}} \text{,} \vspace{3mm} \\ |
− | \frac{\Gamma \ | + | \frac{\Gamma \in \mathrm{WF}}{\Gamma \vdash \mathrm{Type} : \mathrm{Kind}} \text{,} \vspace{3mm} \\ |
− | \frac{\Gamma \ | + | \frac{\Gamma \in \mathrm{WF} \qquad x : T \in \Gamma}{\Gamma \vdash x : T} \text{,} \vspace{3mm} \\ |
\frac{\Gamma \vdash T : \mathrm{Type} \qquad \Gamma\left[x : T\right] \vdash T' : x}{\Gamma \vdash \Pi x : T . T' : s} \text{,} \vspace{3mm} \\ | \frac{\Gamma \vdash T : \mathrm{Type} \qquad \Gamma\left[x : T\right] \vdash T' : x}{\Gamma \vdash \Pi x : T . T' : s} \text{,} \vspace{3mm} \\ | ||
\frac{\Gamma \vdash \Pi x : T . T' : s \qquad \Gamma\left[x : T\right] \vdash t : T'}{\Gamma \vdash \lambda x : T . t : \Pi x : T . T'} \text{,} \vspace{3mm} \\ | \frac{\Gamma \vdash \Pi x : T . T' : s \qquad \Gamma\left[x : T\right] \vdash t : T'}{\Gamma \vdash \lambda x : T . t : \Pi x : T . T'} \text{,} \vspace{3mm} \\ | ||
Строка 22: | Строка 22: | ||
</tex> | </tex> | ||
− | где <tex>s ::= \mathrm{Type} \mid \mathrm{Kind}</tex>. | + | где <tex>s ::= \mathrm{Type} \mid \mathrm{Kind}</tex>, а <tex>\mathrm{WF}</tex> {{---}} множество корректных грамматик. |
Терм <tex>t</tex> '''типизируется''' в контексте <tex>\Gamma</tex>, если существует такой терм <tex>T</tex>, что <tex>\Gamma \vdash t : T</tex>.}} | Терм <tex>t</tex> '''типизируется''' в контексте <tex>\Gamma</tex>, если существует такой терм <tex>T</tex>, что <tex>\Gamma \vdash t : T</tex>.}} |
Версия 19:37, 17 января 2017
-исчисление
Определение: |
Множество термов рекурсивно определяется следующей грамматикой:
Термы . и называются сортами, — переменными, — применениями, — абстракциями, — произведениями. Обозначение используется вместо , если не входит свободно в . |
Пусть есть термы и и переменная . Записью обозначается терм, полученный заменой на в . Запись означает, что термы и -эквивалентны.
Определение: |
Контекст это список пар | , где — переменная, — терм.
Определение: |
Правила вывода для нашего исчисления:
где Терм , а — множество корректных грамматик. типизируется в контексте , если существует такой терм , что . |
Отношение редуцируемости на типизируемых термах сильно нормализуемо и обладает ромбовидным свойством. Каждый типизируемый терм имеет единственную нормальную форму, два терма эквивалентны, если у них одинаковая нормальная форма.
Типизируемый в контексте
терм имеет единственный тип с точностью до эквивалентности.Определение: |
Нормальный терм , где это переменная или сорт, либо видСогласимся первым символом называть в первом случае, и во втором. Первыми переменными будем называть переменные . | , типизируемый в контекте , имеет либо вид
Типизируемость в -исчислении
Определение: |
Терм | типа в контексте называется объектом в , если
Утверждение: |
Если терм является объёктом в контексте , то он является либо переменной, либо применением, либо абстракцией. Если он является применением , тогда оба терма и являются объектами в , если он является абстракцией , то тогда терм является объектом в контексте . |
Определение: |
Множество чистых термов определяется грамматикой | .
Определение: |
Пусть
| — объект в контексте . Содержимое ( ) — это рекурсивно определённый чистый терм:
Определение: |
Чистый терм | называется типизируемым в контексте , если существует терм , типизируемый в неком , являющимся расширением , что является объектом в и .
Типизация чистого терма в контексте это присвоение типов связанным переменным и некоторым свободным переменным, типов которых нет в . Если же контекст пустой, то типизация терма в нём будет являться присваиванием типов и связанным и свободным переменным.
Утверждение: |
Задача вывода типов в пустом контексте разрешима в -исчислении. |
Типизируемые в пустом контексте чистые термы | исчисления совпадают с типизируемыми выражениями просто типизированного -исчисления, а задача вывода типов в просто типизированном -исчислении разрешима.