Неразрешимость задачи вывода типов в языке с зависимыми типами — различия между версиями
(→Неразрешимость задачи вывода типов в \lambda\Pi-исчислении) |
(→Неразрешимость задачи вывода типов в \lambda\Pi-исчислении: Всё кроме доказательства теоремы) |
||
Строка 73: | Строка 73: | ||
{{Утверждение|statement=Если <tex>g</tex> это такой терм, что терм <tex>(g a \ldots a)</tex> (<tex>a</tex> повторяется <tex>n</tex> раз) типизируемый, и он является объектом в неком <tex>\Gamma\Delta</tex>, то тогда терм <tex>g</tex> типизируется в контексте <tex>\Gamma\Delta</tex>, и его тип эквивалентен терму <tex>\Pi x_1 : T \rightarrow T \ldots \Pi x_n : T \rightarrow T . (\beta x_1 \ldots x_n)</tex> для какого-то терма <tex>\beta</tex> типа <tex>(T \rightarrow T) \rightarrow \ldots \rightarrow (T \rightarrow T) \rightarrow \mathrm{Type}</tex> в контексте <tex>\Gamma\Delta</tex>. | {{Утверждение|statement=Если <tex>g</tex> это такой терм, что терм <tex>(g a \ldots a)</tex> (<tex>a</tex> повторяется <tex>n</tex> раз) типизируемый, и он является объектом в неком <tex>\Gamma\Delta</tex>, то тогда терм <tex>g</tex> типизируется в контексте <tex>\Gamma\Delta</tex>, и его тип эквивалентен терму <tex>\Pi x_1 : T \rightarrow T \ldots \Pi x_n : T \rightarrow T . (\beta x_1 \ldots x_n)</tex> для какого-то терма <tex>\beta</tex> типа <tex>(T \rightarrow T) \rightarrow \ldots \rightarrow (T \rightarrow T) \rightarrow \mathrm{Type}</tex> в контексте <tex>\Gamma\Delta</tex>. | ||
|proof=Индукция по <tex>n</tex>.}} | |proof=Индукция по <tex>n</tex>.}} | ||
+ | |||
+ | {{Утверждение|statement=Пусть <tex>t,u_1,\ldots,u_n,v</tex> {{---}} такие нормальные термы, что <tex>(t u_1\ldots u_n)</tex> {{---}} типизируемый терм, и его нормальная форма это <tex>v</tex>. Тогда первый символ <tex>t</tex> это либо первый символ <tex>v</tex>, либо первая переменная <tex>t</tex>. | ||
+ | |proof=Пусть <tex>x</tex> {{---}} первый символ <tex>t</tex>. Если <tex>x</tex> не является первой переменной <tex>t</tex>, то первый символ нормальной формы <tex>(t u_1 \ldots u_n)</tex> это тоже <tex>x</tex>, значит, <tex>x</tex> это первый символ <tex>v</tex>.}} | ||
+ | |||
+ | {{Утверждение|statement=Пусть <tex>t</tex> {{---}} такой нормальный терм типа <tex>(T \rightarrow T) \rightarrow \ldots \rightarrow (T \rightarrow T) \rightarrow T</tex> в контексте <tex>\Gamma</tex>, что нормальная форма <tex>(t \lambda y : T.y \ldots \lambda y : T.y)</tex> равна <tex>c</tex>. Тогда терм <tex>t</tex> является термом вида | ||
+ | <tex>t=\lambda x_1 : T \rightarrow T \ldots \lambda x_n : T \rightarrow T . (x_{i_1} (\ldots (x_{i_p} c)\ldots))</tex> для некой последовательности <tex>i_1,\ldots,i_p</tex>. | ||
+ | |proof=Индукция по числу переменных в <tex>t</tex>.}} | ||
+ | |||
+ | {{Теорема|statement=Задача проверки типизируемости чистого терма в заданном контексте неразрешима. | ||
+ | |proof=всего полторы страницы, скоро будет}} |
Версия 20:28, 17 января 2017
-исчисление
Определение: |
Множество термов рекурсивно определяется следующей грамматикой:
Термы . и называются сортами, — переменными, — применениями, — абстракциями, — произведениями. Обозначение используется вместо , если не входит свободно в . |
Пусть есть термы и и переменная . Записью обозначается терм, полученный заменой на в . Запись означает, что термы и -эквивалентны.
Определение: |
Контекст это список пар | , где — переменная, — терм.
Определение: |
Правила вывода для нашего исчисления:
где Терм , а — множество корректных грамматик. типизируется в контексте , если существует такой терм , что . |
Отношение редуцируемости на типизируемых термах сильно нормализуемо и обладает ромбовидным свойством. Каждый типизируемый терм имеет единственную нормальную форму, два терма эквивалентны, если у них одинаковая нормальная форма.
Типизируемый в контексте
терм имеет единственный тип с точностью до эквивалентности.Определение: |
Нормальный терм , где это переменная или сорт, либо видСогласимся первым символом называть в первом случае, и во втором. Первыми переменными будем называть переменные . | , типизируемый в контекте , имеет либо вид
Задача вывода типов в -исчислении
Определение: |
Терм | типа в контексте называется объектом в , если
Утверждение: |
Если терм является объёктом в контексте , то он является либо переменной, либо применением, либо абстракцией. Если он является применением , тогда оба терма и являются объектами в , если он является абстракцией , то тогда терм является объектом в контексте . |
Определение: |
Множество чистых термов определяется грамматикой | .
Определение: |
Пусть
| — объект в контексте . Содержимое ( ) — это рекурсивно определённый чистый терм:
Определение: |
Чистый терм | называется типизируемым в контексте , если существует терм , типизируемый в неком , являющимся расширением , что является объектом в и .
Типизация чистого терма в контексте это присвоение типов связанным переменным и некоторым свободным переменным, типов которых нет в . Если же контекст пустой, то типизация терма в нём будет являться присваиванием типов и связанным и свободным переменным.
Утверждение: |
Задача вывода типов в пустом контексте разрешима в -исчислении. |
Типизируемые в пустом контексте чистые термы | исчисления совпадают с типизируемыми выражениями просто типизированного -исчисления, а задача вывода типов в просто типизированном -исчислении разрешима.
Неразрешимость задачи вывода типов в -исчислении
Рассмотрим контекст
.
Определение: |
Пусть
| — слово двухсимвольного алфавита . Определим и следующим образом:
Утверждение: |
Рассмотрим проблему соответствий Поста для списков слов над двухсимвольным алфавитом и . Непустая последовательность является её решением тогда и только тогда, когда . |
Утверждение: |
Если это такой терм, что терм ( повторяется раз) типизируемый, и он является объектом в неком , то тогда терм типизируется в контексте , и его тип эквивалентен терму для какого-то терма типа в контексте . |
Индукция по | .
Утверждение: |
Пусть — такие нормальные термы, что — типизируемый терм, и его нормальная форма это . Тогда первый символ это либо первый символ , либо первая переменная . |
Пусть | — первый символ . Если не является первой переменной , то первый символ нормальной формы это тоже , значит, это первый символ .
Утверждение: |
Пусть — такой нормальный терм типа в контексте , что нормальная форма равна . Тогда терм является термом вида
для некой последовательности . |
Индукция по числу переменных в | .
Теорема: |
Задача проверки типизируемости чистого терма в заданном контексте неразрешима. |
Доказательство: |
всего полторы страницы, скоро будет |