Алгоритм Кока-Янгера-Касами, модификация для произвольной грамматики — различия между версиями
Строка 36: | Строка 36: | ||
== Оценка сложности == | == Оценка сложности == | ||
Обозначим <tex>M = \max\limits_{A \rightarrow \alpha}\left|\alpha\right|</tex> — максимальную длину правой части правила. | Обозначим <tex>M = \max\limits_{A \rightarrow \alpha}\left|\alpha\right|</tex> — максимальную длину правой части правила. | ||
+ | |||
+ | Обработки правил вида <tex>A \rightarrow w[i]</tex> и <tex>A \rightarrow \varepsilon</tex> выполняются за <tex>O(n \cdot |\Gamma|)</tex>. | ||
+ | |||
+ | <tex>h\left[A \rightarrow \alpha, i, i, 0\right]</tex> за <tex>O(n \cdot |\Gamma|)</tex>. Проход по всем подстрокам выполняется за <tex>O(n^2)</tex>. | ||
Расчёт вспомогательной динамики занимает <tex>O \left( n^3 \cdot |\Gamma| \cdot M \right)</tex> времени, основной динамики — <tex>O \left( n^2 \cdot |\Gamma| \right)</tex>. Итоговая временная сложность алгоритма равна <tex>O \left( n^3 \cdot |\Gamma| \cdot M \right)</tex>. Алгоритму требуется <tex>O(n^2 \cdot |\Gamma| \cdot M)</tex> памяти. | Расчёт вспомогательной динамики занимает <tex>O \left( n^3 \cdot |\Gamma| \cdot M \right)</tex> времени, основной динамики — <tex>O \left( n^2 \cdot |\Gamma| \right)</tex>. Итоговая временная сложность алгоритма равна <tex>O \left( n^3 \cdot |\Gamma| \cdot M \right)</tex>. Алгоритму требуется <tex>O(n^2 \cdot |\Gamma| \cdot M)</tex> памяти. |
Версия 21:58, 17 января 2017
Задача: |
Пусть дана контекстно-свободная грамматика и слово . Требуется выяснить, выводится ли это слово в данной грамматике. |
Базовая версия данного алгоритма работает только для грамматик в нормальной форме Хомского. Модифицируем алгоритм для работы на произвольных контекстно-свободных грамматиках.
Алгоритм для произвольной грамматики
Будем решать задачу динамическим программированием. Введём динамику базовой версии алгоритма.
, аналогичноТакже введём вспомогательный четырехмерный массив
тогда и только тогда, когда из префикса длины правой части данного правила можно вывести .Рассмотрим все тройки
, где — константа и , и такое, что .- База динамики:
- , если в грамматике присутствует правило , иначе ;
- , если в грамматике присутствует правило , иначе ;
- .
- Переход:
- Пусть значения для всех нетерминалов, пар и уже вычислены, поэтому вспомогательная динамика: . То есть, подстроку можно вывести из префикса длины правой части данного правила, если из префикса длины правой части данного правила можно вывести , а подстрока выводится из -го символа правой части правила. Это вычисление может обратится к , но на результат это не повлияет, так как в данный момент .
- Но если — терминал, то подстроку можно вывести из префикса длины правой части данного правила, если из префикса длины правой части данного правила можно вывести , а подстрока выводится, если .
- Базовая динамика выражается так: . То есть, подстроку можно вывести из нетерминала , если из длины правой части данного правила можно вывести ,
- Завершение:
- После окончания работы ответ содержится в ячейке , где .
Оценка сложности
Обозначим
— максимальную длину правой части правила.Обработки правил вида
и выполняются за .за . Проход по всем подстрокам выполняется за .
Расчёт вспомогательной динамики занимает
времени, основной динамики — . Итоговая временная сложность алгоритма равна . Алгоритму требуется памяти.