Паросочетания: основные определения, теорема о максимальном паросочетании и дополняющих цепях — различия между версиями
Lytr777 (обсуждение | вклад) (добавлены примеры для определений) |
м (ё) |
||
Строка 3: | Строка 3: | ||
{{Определение | {{Определение | ||
|id=matching_def | |id=matching_def | ||
− | |definition= '''Паросочетание''' (англ. ''matсhing'') <tex>M</tex> в двудольном графе — произвольное множество | + | |definition= '''Паросочетание''' (англ. ''matсhing'') <tex>M</tex> в двудольном графе — произвольное множество рёбер двудольного графа, такое что никакие два ребра не имеют общей вершины.}} |
{{Определение | {{Определение | ||
− | |definition= Вершины двудольного графа, инцидентные | + | |definition= Вершины двудольного графа, инцидентные рёбрам паросочетания <tex>M</tex>, называются '''покрытыми''' (англ. ''matched''), а неинцидентные — '''свободными''' (англ. ''unmatched'').}} |
{{Определение | {{Определение | ||
− | |definition= '''Числом | + | |definition= '''Числом рёберного покрытия''' (англ. ''edge covering number'') называется размер минимального рёберного покрытии графа <tex>G</tex> и обозначается через <tex>\rho(G)</tex>.}} |
{{Определение | {{Определение | ||
− | |definition= Число | + | |definition= Число рёбер в наибольшем паросочетании графа <tex>G</tex> называется '''числом паросочетания''' (англ. ''matching number'').}} |
{{Определение | {{Определение | ||
− | |definition= '''Максимальное паросочетание''' (англ. ''maximal matching'') — это такое паросочетание <tex>M</tex> в графе <tex>G</tex>, которое не содержится ни в каком другом паросочетании этого графа, то есть к нему невозможно добавить ни одно ребро, которое бы являлось несмежным ко всем | + | |definition= '''Максимальное паросочетание''' (англ. ''maximal matching'') — это такое паросочетание <tex>M</tex> в графе <tex>G</tex>, которое не содержится ни в каком другом паросочетании этого графа, то есть к нему невозможно добавить ни одно ребро, которое бы являлось несмежным ко всем рёбрам паросочетания.}} |
Другими словами, паросочетание <tex>M</tex> графа <tex>G</tex> является максимальным, если любое ребро в <tex>G</tex> имеет непустое пересечение по крайней мере с одним ребром из <tex>M</tex>. | Другими словами, паросочетание <tex>M</tex> графа <tex>G</tex> является максимальным, если любое ребро в <tex>G</tex> имеет непустое пересечение по крайней мере с одним ребром из <tex>M</tex>. | ||
Строка 17: | Строка 17: | ||
|definition= Паросочетание <tex>M</tex> графа <tex>G</tex> называется '''совершенным (или полным)''' (англ.''perfect matching''), если оно покрывает все вершины графа.}} | |definition= Паросочетание <tex>M</tex> графа <tex>G</tex> называется '''совершенным (или полным)''' (англ.''perfect matching''), если оно покрывает все вершины графа.}} | ||
{{Определение | {{Определение | ||
− | |definition= '''Чередующаяся цепь''' (англ. ''alternating path'') — путь в двудольном графе, для любых двух соседних | + | |definition= '''Чередующаяся цепь''' (англ. ''alternating path'') — путь в двудольном графе, для любых двух соседних рёбер которого верно, что одно из них принадлежит паросочетанию <tex>M</tex>, а другое нет.}} |
{{Определение | {{Определение | ||
|definition= '''Дополняющая цепь (или увеличивающая цепь)''' (англ. ''augmenting path'') — чередующаяся цепь, у которой оба конца свободны.}} | |definition= '''Дополняющая цепь (или увеличивающая цепь)''' (англ. ''augmenting path'') — чередующаяся цепь, у которой оба конца свободны.}} | ||
Строка 33: | Строка 33: | ||
{|align="center" | {|align="center" | ||
|-valign="center" | |-valign="center" | ||
− | |[[Файл: Maximal matching.jpg|thumb|210px|<font color=red>красные | + | |[[Файл: Maximal matching.jpg|thumb|210px|<font color=red>красные рёбра</font> являются рёбрами максимального паросочетания]] |
− | |[[Файл: Perfect_matching.jpg|thumb|245px|<font color=red>красные | + | |[[Файл: Perfect_matching.jpg|thumb|245px|<font color=red>красные рёбра</font> являются рёбрами полного паросочетания.]] |
− | |[[Файл: Alternating_path.jpg|thumb|210px|Пусть <font color=red>красные | + | |[[Файл: Alternating_path.jpg|thumb|210px|Пусть <font color=red>красные рёбра</font> принадлежат паросочетанию <tex>M</tex>, а <font color=blue>синие</font> не принадлежат, тогда чередующаяся цепь: <tex>1-8-4-6-3-7</tex>]] |
|} | |} | ||
Строка 47: | Строка 47: | ||
<tex>\Rightarrow</tex> | <tex>\Rightarrow</tex> | ||
− | Пусть в двудольном графе <tex>G</tex> с максимальным паросочетанием <tex>M</tex> существует дополняющая цепь. Тогда пройдя по ней и заменив вдоль | + | Пусть в двудольном графе <tex>G</tex> с максимальным паросочетанием <tex>M</tex> существует дополняющая цепь. Тогда пройдя по ней и заменив вдоль неё все рёбра, входящие в паросочетание, на невходящие и наоборот, мы получим большее паросочетание. То есть <tex>M</tex> не являлось максимальным. Противоречие. |
<tex>\Leftarrow</tex> | <tex>\Leftarrow</tex> | ||
− | Рассмотрим паросочетание <tex>M</tex> в графе <tex>G</tex> и предположим, что <tex>M</tex> {{---}} не наибольшее. Докажем, что тогда имеется увеличивающая цепь относительно <tex>M</tex>. Пусть <tex>M'</tex> {{---}} другое паросочетание и <tex>|M'|>|M|</tex>. Рассмотрим подграф <tex>H</tex> графа <tex>G</tex>, образованный теми | + | Рассмотрим паросочетание <tex>M</tex> в графе <tex>G</tex> и предположим, что <tex>M</tex> {{---}} не наибольшее. Докажем, что тогда имеется увеличивающая цепь относительно <tex>M</tex>. Пусть <tex>M'</tex> {{---}} другое паросочетание и <tex>|M'|>|M|</tex>. Рассмотрим подграф <tex>H</tex> графа <tex>G</tex>, образованный теми рёбрами, которые входят в одно и только в одно из паросочетаний <tex>M</tex>, <tex>M'</tex>. Иначе говоря, множеством рёбер графа <tex>H</tex> является симметрическая разность <tex>M\oplus M'</tex>. В графе <tex>H</tex> каждая вершина инцидентна не более чем двум рёбрам (одному из <tex>M</tex> и одному из <tex>M'</tex> ), т.е. имеет степень не более двух. В таком графе каждая компонента связности {{---}} путь или цикл. В каждом из этих путей и циклов чередуются рёбра из <tex>M</tex> и <tex>M'</tex>. Так как <tex>|M'|>|M|</tex>, имеется компонента, в которой рёбер из <tex>M'</tex> содержится больше, чем рёбер из <tex>M</tex>. Это может быть только путь, у которого оба концевых ребра принадлежат <tex>M'</tex>. Заметим, что относительно <tex>M</tex> этот путь является увеличивающей (дополняющей) цепью. |
}} | }} | ||
Версия 22:11, 22 января 2017
Содержание
Паросочетание в двудольном графе
Определение: |
Паросочетание (англ. matсhing) | в двудольном графе — произвольное множество рёбер двудольного графа, такое что никакие два ребра не имеют общей вершины.
Определение: |
Вершины двудольного графа, инцидентные рёбрам паросочетания | , называются покрытыми (англ. matched), а неинцидентные — свободными (англ. unmatched).
Определение: |
Числом рёберного покрытия (англ. edge covering number) называется размер минимального рёберного покрытии графа | и обозначается через .
Определение: |
Число рёбер в наибольшем паросочетании графа | называется числом паросочетания (англ. matching number).
Определение: |
Максимальное паросочетание (англ. maximal matching) — это такое паросочетание | в графе , которое не содержится ни в каком другом паросочетании этого графа, то есть к нему невозможно добавить ни одно ребро, которое бы являлось несмежным ко всем рёбрам паросочетания.
Другими словами, паросочетание
графа является максимальным, если любое ребро в имеет непустое пересечение по крайней мере с одним ребром из .
Определение: |
Паросочетание | графа называется совершенным (или полным) (англ.perfect matching), если оно покрывает все вершины графа.
Определение: |
Чередующаяся цепь (англ. alternating path) — путь в двудольном графе, для любых двух соседних рёбер которого верно, что одно из них принадлежит паросочетанию | , а другое нет.
Определение: |
Дополняющая цепь (или увеличивающая цепь) (англ. augmenting path) — чередующаяся цепь, у которой оба конца свободны. |
Определение: |
Уменьшающая цепь (англ. reduce path) — чередующаяся цепь, у которой оба конца покрыты. |
Определение: |
Сбалансированная цепь (англ. balanced path) — чередующаяся цепь, у которой один конец свободен, а другой покрыт. |
Свойства
В любом графе без изолированных вершин, число паросочетания и число рёберного покрытия в сумме дают число вершин. Если существует совершенное паросочетание, то оба числа равны
.Пример максимального и полного паросочетания, чередующейся цепи
Теорема о максимальном паросочетании и дополняющих цепях
Теорема: |
Паросочетание в двудольном графе является максимальным тогда и только тогда, когда в нет дополняющей цепи. |
Доказательство: |
Пусть в двудольном графе с максимальным паросочетанием существует дополняющая цепь. Тогда пройдя по ней и заменив вдоль неё все рёбра, входящие в паросочетание, на невходящие и наоборот, мы получим большее паросочетание. То есть не являлось максимальным. Противоречие.Рассмотрим паросочетание в графе и предположим, что — не наибольшее. Докажем, что тогда имеется увеличивающая цепь относительно . Пусть — другое паросочетание и . Рассмотрим подграф графа , образованный теми рёбрами, которые входят в одно и только в одно из паросочетаний , . Иначе говоря, множеством рёбер графа является симметрическая разность . В графе каждая вершина инцидентна не более чем двум рёбрам (одному из и одному из ), т.е. имеет степень не более двух. В таком графе каждая компонента связности — путь или цикл. В каждом из этих путей и циклов чередуются рёбра из и . Так как , имеется компонента, в которой рёбер из содержится больше, чем рёбер из . Это может быть только путь, у которого оба концевых ребра принадлежат . Заметим, что относительно этот путь является увеличивающей (дополняющей) цепью. |
Источники информации
- Wikipedia — Matching
- Википедия — Паросочетание
- Асанов М. О., Баранский В. А., Расин В. В. — Дискретная математика: Графы, матроиды, алгоритмы. стр. 227-232 ISBN 978-5-8114-1068-2