Изменения

Перейти к: навигация, поиск

Наибольший общий делитель

109 байт добавлено, 20:03, 30 января 2017
Определение
{{Определение
|definition=
'''Наибольшим общим делителем''' (англ. <tex>\gcd</tex> {{---}} ''greatest common divisor'') для двух целых чисел <tex>m</tex> и <tex>n</tex> называется наибольший из их общих делителейнаибольшее натуральное <tex>d</tex>, такое что <tex>a</tex> делится на <tex>d</tex> и <tex>b</tex> делится на <tex>d</tex>. Более формально,
<tex>\gcd(a, b) =\max \left\{ d \mid a \equiv 0 \left(\bmod d\right), b \equiv 0 \left(\bmod d\right) \right\}</tex>
}}
Пусть <tex dpi="140">q = p_1^{\gamma_1}\cdot p_2^{\gamma_2} \cdot \dotso \cdot p_k^{\gamma_k} </tex>. Значит, существует <tex>j \leqslant k : \min(\alpha_j, \beta_j) < \gamma_j</tex>. Из этого следует, что либо <tex>\gamma_j > \alpha_j</tex>, либо <tex>\gamma_j > \beta_j</tex>. Но в первом случае, <tex>q</tex> не окажется делителем <tex>a</tex>, а во втором {{---}} <tex>b</tex>.
}}
 
==Связь с наименьшим общим кратным==
42
правки

Навигация