Список заданий по ТВС 2017 — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
(Новая страница: «<wikitex> # Задание 1 с практики 1 # Задание 2 с практики 1 # Задание 3 с практики 1 # Задание 4 с пра...»)
(нет различий)

Версия 15:06, 18 февраля 2017

<wikitex>

  1. Задание 1 с практики 1
  2. Задание 2 с практики 1
  3. Задание 3 с практики 1
  4. Задание 4 с практики 1
  5. Задание 5 с практики 1
  6. Задание 6 с практики 1
  7. Докажите, что язык простых чисел принадлежит $NP$. Указание: использовать без доказательства следующие факты. Число $p$ является простым, тогда и только тогда, когда существует первообразный корень по модулю $p$: число $g$, такое что $g^{p-1} \equiv 1 \pmod p$, $g^k \not\equiv 1 \pmod p$ для $1 \le k < p-1$. Число $g$ является первообразным корнем по модулю $p$ тогда и только тогда, когда $g^{p-1} \equiv 1 \pmod p$, $g^{\frac{p-1}{q}} \not\equiv 1 \pmod p$ для всех $q$ - простых делителей $p - 1$.
  8. Докажите, что язык $VCover = \{\langle G, k\rangle,$ в графе $G$ существует вершинное покрытие размера $k\}$ вершинных покрытий принадлежит $NP$.
  9. В определении класса $NP$ на языке недетерминированных программ требуется, чтобы в любой ветке развития программа работала не более полинома. Покажите, что это несущественно и можно дать такое определение $NP$: $NP$ - класс языков, для которых существует недетерминированная программа, распознающая принадлежность языку, причем в случае допуска существует хотя бы одна последовательность недетерминированных выборов, приводящая к допуску, такая что время работы ограничено полиномом.

</wikitex>